
International Journal of Power Electronics and Drive System (IJPEDS) 

Vol. 16, No. 2, June 2025, pp. 827~839 

ISSN: 2088-8694, DOI: 10.11591/ijpeds.v16.i2.pp827-839      827

  

Journal homepage: http://ijpeds.iaescore.com 

Harmonic control in electrical drives for transport systems 
 

 

Thanh Lich Nguyen1, Van Trang Phung2 
1Department of Mechatronics, Faculty of Mechanical Engineering, University of Transport and Communications, Hanoi, Vietnam 

2Modelling and Simulation Center, Viettel High Technology Industries Corporation, Hanoi, Vietnam 

 

 

Article Info  ABSTRACT 

Article history: 

Received Nov 25, 2024 

Revised Mar 29, 2025 

Accepted May 6, 2025 

 

 Field-oriented control (FOC) is the most widely used method for controlling 

alternating current (AC) drives, using Clarke and Park transformations to 

enable current controllers to manipulate the amplitude of the fundamental 

component of the phase currents. The inherent advantage of the FOC method 

is that it transforms current control tasks into a DC domain, thereby enhancing 

the dynamics of current response and the capability of tracking the current 

reference. The idea of the FOC can be extended beyond the fundamental 

component to control some of the harmonics buried in any signals presented 

in electrical drives, which is particularly critical in transport systems. This 

paper presents a harmonic control framework, optimized for transport 

applications, with three different topologies: adaptive linear neural (Adaline), 

resonant controller (RC), and harmonic controller (HC). The study provides a 

comprehensive theoretical analysis of the mathematical relationships between 

these three control structures. Additionally, it explores the application of 

harmonic controllers in both current and speed control loops. Simulation and 

experimental results are used to validate the proposed framework, 

demonstrating its potential to improve the performance of electric drives in 

vehicles, including enhanced energy efficiency, reduced electromagnetic 

interference, and smoother torque production. 
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1. INTRODUCTION 

To address the global challenge of reducing carbon dioxide emissions, electrical machines are widely 

used in important industrial sectors, particularly in transportation applications such as aerospace, robotics, 

crane systems, and electric vehicles [1]. Electrical drives are a preferred choice due to their high power density, 

low maintenance costs, high torque density, and high efficiency [2]. Despite the numerous benefits of electrical 

drives, there are some unwanted phenomena that lead to torque/speed ripples during the commissioning of 

electrical machines, affecting their performance and reliability [3]. The most well-known factors contributing 

to torque ripples are the current measurement error [4], [5], dead-time effects [6], [7], cogging torque  

harmonics [8], [9], and flux harmonics [10]. 

Among the above phenomena, the current measurement error is a major source of the periodic 

disturbances in electrical drives. The DC offset errors in the current measurement result in periodic errors in 

the q-component of the phase current in the rotor flux-oriented coordinate, hence causing periodic torque 

ripples [11]. Dead-time insertion, implemented to prevent short circuits in the switches of the voltage source 

inverters, introduces the sixth-order harmonic and its multiples into the dq-current components [6], [12], [13]. 

The undesirable harmonics in the modulated voltage distort the output voltage, leading to corresponding 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 16, No. 2, June 2025: 827-839 

828 

harmonics in the phase currents and subsequently causing ripples in the electromagnetic torque. Additionally, 

flux harmonics are due to the non-ideal sinusoidal flux distribution in the air gap, which is influenced by the 

machine construction and the properties of the permanent magnets [14]. 

In addition to the current ripples, speed oscillations caused by external disturbances can also be 

observed in electrical drives. This phenomenon is particularly prevalent in transport systems such as conveyor 

belts and cargo robots, where the mechanical systems attached to the driving machines are characterized by 

repetitive phenomena. A characteristic feature of such systems is the periodic load torque, which eventually 

causes speed oscillations. These oscillations introduce undesired harmonics into the control signals, negatively 

impacting the overall performance. Specifically, they can reduce the precision of the position control loop, 

decrease the torque per ampere ratio of the electrical machine, and increase the ohmic losses due to the skin 

effect associated with high-frequency components in the flux and stator current spectra. 

To mitigate the negative effects of undesirable harmonics, the implementation of harmonic controllers 

in industrial electrical drives is crucial [4], [15], [16]. Various harmonic controller topologies have been 

developed, including the resonant controller (RC) [17], [18], harmonic controller (HC) [19], and adaptive linear 

neural (Adaline) [15], [20], [21]. The three aforementioned topologies share a common working principle of 

dealing with the specific harmonic in physical quantities. However, a comprehensive analysis of their 

similarities and differences, particularly with respect to mathematical description and experimental 

implementation, is still lacking. This research work focuses on filling this research gap by highlighting the 

same mathematical description of these topologies and also investigating the differences regarding the 

discretized implementation and phase compensation techniques. 

The main contributions of this work are as follows. First, it demonstrates that while the mathematical 

descriptions of the three considered topologies are equivalent, their discretized implementations differ due to 

variations in discretization methods. Second, a novel phase compensation approach is proposed for the Adaline 

and HC topologies, filling a gap in the existing literature. Third, the effectiveness of the harmonic controllers 

is validated through both simulation and experimental results, specifically in the context of harmonic 

cancellation in speed and current control loops. 

The remainder of the paper is organized as section 2 is dedicated to the control topologies of Adaline, 

RC, and HC, followed by the simulation and experimental validation given in section 3. Finally, the conclusions 

are summarized in section 4. 
 

 

2. COMPARISON AND IMPLEMENTATION OF HARMONIC CONTROLLERS 

2.1.  Comparison between Adaline, RC, and HC 

To illustrate the similarities between the Adaline, harmonic controller, and the resonant controller, 

let’s consider an example of phase current harmonic control in the rotor flux-oriented reference frame (𝑑𝑞-

reference frame). First, the transfer function of the RC will be presented. Then the comparison among the 

Adaline, HC, and RC will be addressed as follows: i) the HC and RC are compared in terms of mathematical 

representation and ii) the HC and Adaline are compared with regard to working principle and implementation. 

Figure 1(a) shows the structure of the harmonic controller, composed of a resonant component (RC) 

working in parallel with a conventional proportional-integral (PI) controller [4]. The transfer function of the 

resonant controller without phase compensation is given by (1). 
 

𝐺RC(𝑠) = 𝐾i ∙  
𝑠

𝑠2+𝜔𝑥
2 (1) 

 

Where 𝜔𝑥 = 2π𝑓𝑥 with 𝑓𝑥 is the frequency of the xth harmonic to be considered; 𝐾i is the gain of the RC; and 

𝐺𝑥(𝑠) = 1 (𝐿𝑥𝑠 + 𝑅𝑥)⁄  is the equivalent transfer function that combines the transfer functions of the machine, 

the inverter and the low-pass filter used for the current measurement. 

The primary idea of the RC is to provide infinite gain of the open loop at the resonant frequency, and 

hence it ensures a zero error for the closed control loop. However, the RC controller given in (1) cannot 

manipulate a resonant frequency that is relatively high compared to the sampling frequency of the control 

algorithm. This is due to the time delay originated from the control algorithm. The time delay reduces the phase 

margin of the closed control loop, which is then prone to instability. To address this issue, phase compensation 

is commonly applied to the RC to increase the phase margin. The transfer function of the modified resonant 

controller with phase compensation is given in (2) [18], [22]. 
 

𝐺RC(𝑠) = 𝐾i ∙  
𝑠∙cos𝜑m−𝜔𝑥∙sin𝜑m

𝑠2+𝜔𝑥
2  (2) 

 

Where 𝜑m is the compensated phase. 
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Figure 1(b) depicts the closed-loop current control incorporating the modified resonant controller. As 

expressed in (2), the transfer function 𝐺RC(𝑠) involves two key design parameters, namely the gain 𝐾i and the 

phase 𝜑m. Phase compensation is excluded in the scope of this study and will be presented in detail in the 

ongoing work. Regarding the design of gain 𝐾i, there are some remarks. Firstly, 𝐾i decides the dynamics of the 

closed loop pertaining to reference tracking capability. The higher the value of 𝐾i, the faster of the output 

response, but the controller reaches saturation earlier. Secondly, the higher the value of the amplitude 

associated with the resonant harmonic, the higher the gain 𝐾i. Thirdly, if there are several resonant components, 

the gains must be optimized sequentially to ensure that the interaction between the harmonic components is 

under fully taken into account. 
 
 

(a) 

 

(b) 

 
 

Figure 1. Resonant controller for the current control loop: (a) without phase compensation and  

(b) with phase compensation 
 

 

2.1.1. Comparison of HC and RC 

This section presents a detailed mathematical analysis demonstrating the equivalence between the 

resonant controller and the harmonic controller in terms of their mathematical formulation. It is well known 

that as (3)-(5). 

 

𝑥cos(𝑡) = 𝑥(𝑡) ∙ cos(𝜔𝑥𝑡 + 𝜑m) = 𝑥(𝑡) ∙
ej(𝜔𝑥𝑡+𝜑m)+e−j(𝜔𝑥𝑡+𝜑m)

2
 (3) 

 

𝑥sin(𝑡) = 𝑥(𝑡) ∙ sin(𝜔𝑥𝑡 + 𝜑m) = 𝑥(𝑡) ∙
ej(𝜔𝑥𝑡+𝜑m)−e−j(𝜔𝑥𝑡+𝜑m)

2j
 (4) 

 

ℒ{e𝑎𝑡𝑓(𝑡)} → 𝐹(𝑠 − 𝑎) (5) 

 

Where ℒ is the Laplace transform and 𝜔𝑥 is the angular velocity of the xth harmonic. Taking the Laplace 

transformation, we have (6) and (7). 

 

𝑋cos(𝜔) =
1

2
[𝑋(𝜔 − 𝜔0) ∙ ej𝜑m + 𝑋(𝜔 + 𝜔0) ∙ e−j𝜑m] (6) 

 

𝑋sin(𝜔) =
j

2
[𝑋(𝜔 − 𝜔0) ∙ ej𝜑m − 𝑋(𝜔 + 𝜔0) ∙ e−j𝜑m] (7) 

 

We denote ∗ as the convolution multiplication, then as (8). 

 

𝑣x
Har(𝑡) = {[∆𝑖(𝑡) ∙ cos(𝜔𝑥𝑡) ∗ ℎ(𝑡)]} ∙ cos(𝜔𝑥𝑡 + 𝜑m) + {[∆𝑖(𝑡) ∙ sin(𝜔𝑥𝑡) ∗ ℎ(𝑡)]} 

 ∙ sin(𝜔𝑥𝑡 + 𝜑m) (8) 
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We denote as (9) and (10). 
 

𝑓1(𝑡) = ∆𝑖(𝑡) ∙ cos(𝜔𝑥𝑡) ∗ ℎ(𝑡) (9) 
 

𝑓2(𝑡) = ∆𝑖(𝑡) ∙ 𝑠𝑖𝑛(𝜔𝑥𝑡) ∗ ℎ(𝑡) (10) 
 

Then the Laplace transformation of 𝑓1(𝑡) and 𝑓2(𝑡) are as (11) and (12). 
 

𝐹1(𝑠) = ℒ{∆𝑖(𝑡) ∙ cos(𝜔𝑥𝑡) ∗ ℎ(𝑡)} = ℒ{∆𝑖(𝑡) ∙ cos(𝜔𝑥𝑡)} ∙ 𝐻(𝑠) 

  =
1

2
[∆𝐼(𝑠 + j𝜔𝑥) + ∆𝐼(𝑠 − j𝜔𝑥)] ∙ 𝐻(𝑠) (11) 

 

𝐹2(𝑠) = ℒ{∆𝑖(𝑡) ∙ sin(𝜔𝑥𝑡) ∗ ℎ(𝑡)} = ℒ{∆𝑖(𝑡) ∙ sin(𝜔𝑥𝑡)} ∙ 𝐻(𝑠) 

=
j

2
[∆𝐼(𝑠 + j𝜔𝑥) − ∆𝐼(𝑠 − j𝜔𝑥)] ∙ 𝐻(𝑠) (12) 

 

According to (6) and (11), we have (13). 
 

𝐴 = ℒ{[∆𝑖(𝑡) ∙ cos(𝜔𝑥𝑡) ∗ ℎ(𝑡)] ∙ cos(𝜔𝑥𝑡 + 𝜑m)} = ℒ{𝑓1(𝑡) ∙ cos(𝜔𝑥𝑡 + 𝜑m)}  

=
1

2
{𝐹1(𝑠 − j𝜔𝑥) ∙ ej𝜑m + 𝐹1(𝑠 + j𝜔𝑥) ∙ e−j𝜑m}  

=
1

4
{

[[∆𝐼(𝑠) + ∆𝐼(𝑠 − 2j𝜔𝑥)] ∙ 𝐻(𝑠 − j𝜔𝑥)] ∙ ej𝜑m

+[∆𝐼(𝑠 + 2j𝜔𝑥) + ∆𝐼(𝑠)] ∙ 𝐻(𝑠 + j𝜔𝑥) ∙ e−j𝜑m
} (13) 

 

According to (7) and (12), we have (14). 
 

𝐵 = ℒ{[∆𝑖(𝑡) ∙ sin(𝜔𝑥𝑡) ∗ ℎ(𝑡)] ∙ sin(𝜔𝑥𝑡 + 𝜑m)} = ℒ{𝑓2(𝑡) ∙ sin(𝜔𝑥𝑡 + 𝜑m)}  

 =
j

2
{𝐹2(𝑠 − j𝜔𝑥) ∙ ej𝜑m − 𝐹1(𝑠 + j𝜔𝑥) ∙ e−j𝜑m}  

=
1

4
{

[[∆𝐼(𝑠) − ∆𝐼(𝑠 − 2j𝜔𝑥)] ∙ 𝐻(𝑠 − j𝜔𝑥)] ∙ ej𝜑m

−[∆𝐼(𝑠 + 2j𝜔𝑥) − ∆𝐼(𝑠)] ∙ 𝐻(𝑠 + j𝜔𝑥) ∙ e−j𝜑m
} (14) 

 

Substitute (13) and (14) into (8) we have (15). 
 

ℒ(𝑣𝑥
Har) = 𝐴 + 𝐵 =

1

2
{𝐻(𝑠 − j𝜔𝑥) ∙ ej𝜑m + 𝐻(𝑠 + j𝜔𝑥) ∙ e−j𝜑m}∆𝐼(𝑠) (15) 

 

From (15) with 𝐻(𝑠) = 𝐾i/𝑠, the transfer function of the harmonic controller is (16). 
 

𝐺HC(𝑠) =
1

2
[𝐻(𝑠 − j𝜔𝑥) ∙ ej𝜑m + 𝐻(𝑠 + j𝜔𝑥) ∙ e−j𝜑m]  

  =
1

2
 

𝐾i

𝑠−j𝜔𝑥
∙ ej𝜑m +

1

2

𝐾i

𝑠+j𝜔𝑥
∙ e−j𝜑m  

  =
𝐾i (𝑠∙cos𝜑m − 𝜔𝑥∙sin𝜑m)

𝑠2+𝜔𝑥
2  (16) 

 

From (2) and (16) it is obvious that the transfer functions of the HC and of the RC are identical. 
 

2.1.2. Comparison of HC and Adaline 

The graphical depiction of the HC is shown in Figure 2, with (17). 
 

𝜃𝑥 = ∫ 𝜔𝑥d𝑡 (17) 
 

Where: 𝜃𝑥 is the electrical angle of the xth harmonic. The relationship between the Adaline and the harmonic 

controller topologies, as shown in Figures 3(a) and 3(b), is now discussed. The Adaline topology with phase 

compensation, as depicted in Figure 3(a), is a contribution to this work. In the same manner as the RC, the 

Adaline with phase compensation enhances the system stability and improves the dynamic performance of the 

reference tracking. 

The (18) and (19) describe the weight update law in the Adaline model, where 𝑤𝑥,Ada
cos  and 𝑤𝑥,Ada

sin  are 

weight parameters associated with the xth harmonic at angle 𝜃𝑥. Specifically, these weights are updated by 

adding a term proportional to the learning rate 𝜂, current error ∆𝑖𝑥, and sine/cosine values of 𝜃𝑥 defined in (17). 
 

𝑤𝑥,Ada
cos = 𝑤𝑥,Ada

cos + 𝜂 ∙ ∆𝑖𝑥 ∙ cos(𝜃𝑥) (18) 
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𝑤𝑥,Ada
sin = 𝑤𝑥,Ada

sin + 𝜂 ∙ ∆𝑖𝑥 ∙ sin(𝜃𝑥) (19) 
 

It is necessary to mention again that for different harmonics corresponding to distinct resonant frequencies the 

appropriate learning rate must be chosen sequentially to ensure stability and optimal performance. The final 

estimated harmonic voltage 𝑣𝑥
Ada is then incorporated into the current control loop to enhance harmonic 

compensation. 

On the other hand, (20) and (21) define the update law for the HC, where 𝑤x,Har
cos  and 𝑤x,Har

sin  are 

obtained through integral operations involving 𝐾i ∙ ∆𝑖𝑥, and the corresponding trigonometric terms. 
 

𝑤x,Har
cos = ∫ 𝐾i ∙ ∆𝑖𝑥 ∙ cos(𝜃𝑥) ∙ d𝑡 (20) 

 

𝑤x,Har
sin = ∫ 𝐾i ∙ ∆𝑖𝑥 ∙ sin(𝜃𝑥) ∙ d𝑡 (21) 

 

Where 𝐾i is the gain of the harmonic controller. The selection of 𝐾i can be done by the root-locus method and 

is conducted one-by-one to consider the interaction between different HCs corresponding to different 

harmonics [23]. By comparing (18) with (20) and (19) with (21), we observe that if we set 𝜂 = 𝐾i ∙ Δ𝑇, where 

Δ𝑇 is the sampling time of the integral, and if the approximation of the integrals in (20) and (21) adopts the 

forward Euler method, then we obtain (22) and (23). 
 

𝑤x,Har
cos = 𝑤x,Har

cos + 𝐾i ∙ ∆𝑖𝑥 ∙ cos(𝜃𝑥) ∙ Δ𝑇 (22) 
 

𝑤x,Har
sin = 𝑤x,Har

sin + 𝐾i ∙ ∆𝑖𝑥 ∙ sin(𝜃𝑥) ∙ Δ𝑇 (23) 
 

It is observed that the update rules for the Adaline and the HC become mathematically identical. This confirms 

that the two methods are fundamentally equivalent. 
 

 

 
 

Figure 2. Structure of the harmonic controller 
 

 

(a) 

 

(b) 

 

Figure 3. Structures of the (a) Adaline and (b) harmonic controllers equipped with a PI controller 
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There are several important remarks that can be drawn from Adaline and HC. First, both of them operate 

based on a single-phase transformation that is similar to Park’s transformation adopted in field-oriented control 

(FOC). This transformation allows the update rule to work directly with the DC component of the controlled 

signal, improving both the dynamics and accuracy of the control algorithm. Both Adaline and HC ensure precise 

pole placement at the resonant frequency when discretizing the control algorithm with any method. 
 

2.2.  Implementation of the harmonic controller 

As presented in section 2.1., the Adaline, the RC, and the HC are mathematically equivalent. The 

differences among these topologies lie in their discretization methods. The discretized poles of the resonant 

controller, whose topology is shown in Figure 1(a), strongly depend on the discretization method [17]. Ideally, 

the resonant controller provides infinite gain at 𝑠1,2 = ±j𝜔h. Consequently, the discretized denominator of the 

resonant controller should be in the form of (24). 
 

Denominator =  (𝑠 − 𝑠1)(𝑠 − 𝑠2) → (𝑧 − e−j𝜔𝑥𝑇s)(𝑧 − ej𝜔𝑥𝑇s) = 𝑧2 − 2 cos(𝜔𝑥𝑇s) 𝑧 + 1 (24) 
 

Where 𝑇s is the sampling time of the harmonic controller. Table 1 summarizes the denominator forms of the 

resonant controller according to different discretization methods. It is obvious that only the method in group 

E, consisting of the zero-order hold (ZOH), first-order hold (FOH), Tustin with pre-warping (TP), impulse 

response (IPM), and zero-pole matching (ZPM), ensures precise poles of the resonant controller after the 

discretization process. In contrast, other discretization methods introduce pole shifts around the resonant 

frequency. This shift reduces the gain of the resonant component at the resonant frequency, resulting in a non-

zero steady-state error in the closed loop control system. 

The determination of the phase compensation plays a crucial role in facilitating the implementation of 

harmonic controllers. In principle, the compensated phase for each harmonic can be defined by a look-up table.  

To build up the look-up table, a procedure as depicted in Figure 4 can be employed. The machine operates at 

different operating points defined by different load torques and speeds using a conventional PI current 

controller, without implementing RC, HC, or Adaline controllers. At each operating point, the reference and 

measured current in the d- and q-axes are recorded and processed using an online fast Fourier transform (FFT) 

algorithm. The main function of the online FFT algorithm is to extract the phase information of the considered 

harmonics embedded in the reference and measured currents. The phase difference between these signals 

determines the required phase compensation at each operating point. By combining the phase compensation 

data from multiple operating points, the final look-up table for the phase compensation is built. For simple 

implementation, linear interpolation can be used for the look-up table. 
 

 

Table 1. Discretization of the resonant controller 
Group Expression Denominator 

A 𝑅f(𝑧) - Forward Euler 1 − 2𝑧−1 + 𝑧−2(𝜔𝑥
2𝑇s

2 + 1) 

B 𝑅b(𝑧) - Backward Euler (𝜔𝑥
2𝑇s

2 + 1) − 2𝑧−1 + 𝑧−2 

C 𝑅t(𝑧) - Tustin (𝜔𝑥
2𝑇s

2 + 4) + (2𝜔𝑥
2𝑇s

2 − 8)𝑧−1 + 𝑧−2(𝜔𝑥
2𝑇s

2 + 4) 

D 𝑅f&b(𝑧)- Forward&Backward 1 + (𝜔𝑥
2𝑇s

2 − 2)𝑧−1 + 𝑧−2 

E 𝑅zoh(𝑧), 𝑅foh(𝑧), 𝑅tp(𝑧), 𝑅ipm(𝑧), 𝑅zpm(𝑧) 1 − 2 cos(𝜔𝑥𝑇s)𝑧−1 + 𝑧−2 

 

 

 
 

Figure 4. Procedure for building the look-up table 
 

 

The three types of controllers are then compared in terms of memory requirement and computational 

complexity. As already mentioned in section 2.2, the discretization methods belonging to group E ensure an 

infinite gain of the resonant controller, as given in (2), at the resonant frequency, making them suitable for the 

RC implementation. For evaluation purposes, the Tustin method with pre-wrapping is selected to assess the 

runtime performance and memory requirements. The discretized transfer function of the resonant controller is 

expressed as (25) [24]. 
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GRC(𝑠) = 𝐾i ∙  
𝑠∙cos𝜑m−𝜔𝑥∙sin𝜑m

𝑠2+𝜔𝑥
2  →  GRC(𝑧)  

  = 𝐾i ∙
1

2
(1−𝑧−2)cos𝜑m sin(𝜔𝑥𝑇s)−(1+2𝑧−1+𝑧−2)sin𝜑msin2(

𝜔𝑥𝑇s
2

)

𝜔m(1−2 cos(𝜔𝑥𝑇s)𝑧−1+𝑧−2)
 (25) 

 

Where 𝑇s is the sampling time of the RC. 

For the case of Adaline and HC, the forward Euler discretization method is adopted due to its 

simplicity, while still ensuring good behavior of the controllers. It is necessary to mention that the single 

precision floating-point variable is preferred in the automotive industry due to the compromise between the 

precision and memory/runtime optimization. Table 2 shows a comparative evaluation of the memory 

requirement and computational load of the RC, HC, and Adaline controllers. It is observed that the execution 

of HC and Adaline is identical and less complicated compared to the RC. In addition, an optimized 

trigonometric function evaluation method, such as those presented in [25], can be used to reduce the runtime 

of the 04 trigonometric functions, making the three proposed controllers feasible in reality. 
 

 

Table 2. Memory requirement and computational burden of the RC, HC, and Adaline 
Method RC HC Adaline 

Memory requirement 5 singles 3 singles 3 singles 

Load burden 

+ 04 trigonometric functions: 

cos𝜑m, sin𝜑m, sin(𝜔𝑥𝑇s), 

cos(𝜔𝑥𝑇s). 

+ 16 multiplications 
+ 06 additions or subtractions 

+ 01 division 

+ 04 trigonometric functions: 

cos𝜃𝑥, sin𝜃𝑥, cos(𝜃𝑥 + 𝜑m), 

sin(𝜃𝑥 + 𝜑m) 

+ 08 multiplications 

+ 04 additions or subtractions 

+ 04 trigonometric functions: 

cosθx, sinθx, cos(𝜃𝑥 + 𝜑m), 

sin(𝜃𝑥 + 𝜑m) 

+ 08 multiplications 

+ 04 additions or subtractions 

 

 

3. SIMULATION AND EXPERIMENTAL VALIDATION 

In this section, simulation and experimental results are used to verify the effectiveness of the current 

and harmonic controllers in an electrical drive. 
 

3.1.  Simulation validation for harmonic current controller 

The parameters of the current control loop are defined as follows: 𝑅𝑥 = 90 mΩ, 𝐿𝑥 = 1 mH, 𝑓s =
10 kHz, 𝑓𝑥 = 600 Hz, 𝜑m = 1.5 rad. The amplitude of the current reference is set to 4 A. The simulations are 

conducted using the HC, Adaline, and RC controllers, both with and without phase compensation. Additionally, 

the operation performance of the RC controller is evaluated under different discretization methods. 

Figures 5(a)-5(c) illustrate the current response behavior of the HC, Adaline, and RC controllers, 

respectively, demonstrating their ability to effectively track the reference current within approximately 0.1 s. 

The magnified view of these three controllers, as shown in Figures 6(a)-6(c), highlights a zero current tracking 

error, illustrating the excellent reference tracking performance of the harmonic controller. 
 

 

 
 

Figure 5. (Simulation) of current responses of (a) HC, (b) Adaline, (c) RC, and (d) RC-backward 

with phase compensation 

(a) (b) 

(c) (d) 
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In contrast, Figure 5(d) and its enlarged view in Figure 6(d) show the performance of the RC controller 

when a discretization method from Group B in Table 1 is employed. In this scenario, the current error persists 

over time, indicating that the RC controller cannot achieve accurate current regulation under this discretization 

approach. Notably, as depicted in Figure 5(c), the RC controller maintains proper functionality only when 

discretization methods categorized under Group E are employed. These results are consistent with the 

theoretical analysis outlined in section 2.1, reinforcing the critical role of discretization selection in ensuring 

optimal controller performance. 

Figures 7(a)-7(d) and its magnified view in Figures 8(a)-8(d) show the current responses without the 

phase compensation for the harmonic component. In this case, the current response becomes unstable as it goes 

to infinity within a short time. This phenomenon proves that phase compensation is mandatory for the harmonic 

controller, especially when the controlled signal frequency is relatively high compared to the sampling frequency. 
 

 

 
 

Figure 6. Zoom-in of (simulation) current responses of (a) HC, (b) Adaline, (c) RC, and (d) RC-backward 

with phase compensation 
 

 

 
 

Figure 7. (Simulation) current responses of (a) HC, (b) Adaline, (c) RC, and (d) RC-backward  

without phase compensation 
 

 

3.2.  Experimental validation of harmonic speed controller for the PMSM 

In this section, experimental results are presented to verify the effectiveness of the proposed harmonic 

speed control for a permanent magnet synchronous machine (PMSM). The control scheme for the PMSM, as 

shown in Figures 9(a) and 9(b), is based on the parameters given in Table 3. The PMSM is equipped with a 

slider-crank mechanism, where the load torque varies periodically as a function of the crank angle. A detailed 

description of the mechanical configuration and the angle-dependent load torque can be found in [26]. The 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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slider-crank mechanism is an example of repetitive mechanical systems commonly encountered in 

transportation applications, such as crane systems, cargo robots, and conveyor belts. The field-oriented control 

(FOC) algorithm is implemented on a dSPACE 1104 board with a sampling frequency of 5 kHz. The current 

control loops are designed to achieve a bandwidth of 400 Hz, ensuring precise control performance. For 

feedback, a 2048-pulse, 4-fold encoder is employed to measure the true angle of the rotor, which is used as a 

reference value for the control system. This experimental setup facilitates accurate evaluation of the proposed 

control strategies under practical operating conditions. 
 

 

 
 

Figure 8. Zoom-in of (simulation) current responses of (a) HC, (b) Adaline, (c) RC, and (d) RC-backward 

without phase compensation 
 

(a) 

 

(b) 

 
 

Figure 9. The PMSM is installed in a slider-crank mechanism: (a) hardware connection and (b) control scheme 

(a) (b) 

(c) (d) 
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The periodic nature of the load torque introduces speed ripples that cannot be effectively suppressed by 

a conventional proportional-integral (PI) speed controller. To overcome this limitation, a harmonic controller is 

used in this work to mitigate the speed oscillations. It is important to note that the slider crank mechanism is 

directly attached to the shaft of the driving machine, hence, the system should be operated at low speeds to prevent 

excessive vibration in the mechanism. The proposed harmonic controller is designed to actively compensate for 

harmonics up to the 5th order of the speed, ensuring smoother and more stable operation of the system. 

Figure 10 shows the speed response of the system when controlled by the conventional PI controller 

and the HC. In this case, the reference speed was set to 80 min-1 with a slope of 60 min-1/s. The reason for using 

of a ramp-up reference speed rather than a step one is to evaluate the performance of the HC under dynamic 

conditions. Using a step-reference speed would likely cause the speed controller to become saturated during 

transients, making no difference between the HC and the PI controllers. As the operating frequency, derived 

from the operating speed, is significantly lower than the sampling frequency, phase compensation is not 

mandatory for the harmonic controller. It can be clearly observed in Figure 10 that the HC ensures better 

reference tracking capability of the speed control loop in both dynamic and steady state modes. In the test bench 

for a mechatronic system equipped with a slider-crank mechanism, the load torque varies periodically, 

completing one cycle per one revolution of the rotor. The changing load torque results in a speed oscillation of 

16 min-1 (20% of the reference speed) when using the conventional PI controller. In contrast, the HC effectively 

eliminates the speed oscillation, especially in the steady state. This improvement is further illustrated through 

the spectrum analysis of the speed error, defined as the deviation between the reference speed and the actual 

response, as shown in Figure 11 for both the PI and HC controllers. It is realized that the HC significantly reduces 

the harmonics in the speed response, demonstrating its effectiveness in achieving a ripple-free operation. 

Figure 12 presents the experimental speed response of the system using Adaline (black) and RC (blue) 

controllers. Both controllers achieve the target speed of 90 rpm with a rise time of approximately 1 second. 

The Adaline controller responds promptly following its reference (gray), with slight steady-state oscillations. 

The RC controller tracks its delayed reference step at 2.8 seconds with high accuracy and minimal overshoot. 

Both controllers demonstrate effective tracking, with Adaline showing a faster initial response and RC offering 

high steady-state accuracy. 

 

 

Table 3. Parameters of the PMSM 
Parameters Value Unit 

Machine model ABB SDM 101-005N8-115 
Nominal power 1.54 kW 

Nominal voltage 360 V 

Nominal velocity 3000 min−1 

Nominal torque 4.9 Nm 

Pole pairs 3  

Winding resistance 𝑅UV 6.4 Ω 

Winding inductance 𝐿UV 21.8 mH 

Moment of inertia 0.0006 kg ∙ m2 

 

 

 
 

Figure 10. (Experiment) speed responses with the HC (red) and conventional PI speed controller (blue) 
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Figure 11. (Experiment) spectrum of speed error: (blue) with the HC controller, (red) with conventional PI 

controller 

 

 

 
 

Figure 12. (Experiment) speed response with the Adaline (black) and RC (blue) controllers 

 

 

4.  CONCLUSION 

This paper has successfully demonstrated the mathematical relationship between the Adaline, the 

harmonic controller and the RC controllers. Although the three topologies shared an identical mathematical 

description, their digital implementation might be different depending on the discretization method used. For 

the Adaline and HC, which inherently include sine/cosine operations in their topologies, any discretization 

method can be applied to the integral term without compromising functionality. However, in the case of the 

RC, specific discretization methods must be carefully chosen to ensure proper operation. Experimental 

validation confirms that the RC, HC, and Adaline are effective in mitigating harmonics buried in the phase 

current and speed of electrical drives. This functionality is highly essential for transport applications, where 

accurate harmonic control improves energy efficiency, minimizes electromagnetic interference, and ensures 

smoother torque generation, which are key factors in the reliable and sustainable operation of electric and 

hybrid vehicles. In addition, from a software maintenance perspective, the Adaline and HC offer practical 

benefits due to their simpler and more flexible implementation, making them more favorable for long-term 

deployment in advanced transport systems. By overcoming the challenges associated with harmonic mitigation, 

the proposed methods establish a framework for enhancing the efficiency and reliability of electric drive 

systems, thus contributing significantly to the advancement of sustainable transport technologies 
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