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1. INTRODUCTION

The increasing environmental and economic challenges associated with fossil fuel consumption have
accelerated the global shift toward renewable energy systems [1]. Among these, solar photovoltaic (PV)
technology has gained prominence due to its scalability, ease of deployment, and low environmental impact.
Despite these benefits, fluctuations in solar irradiance introduce power variability that undermines voltage
stability and overall system efficiency [2]. To mitigate such issues, advanced power conditioning and adaptive
control techniques are required to ensure stable operation under changing environmental conditions [3]].

In PV systems, DC-DC boost converters (BCs) are commonly employed to step up the inherently
low voltage output of PV modules to levels appropriate for standalone or grid-connected use [4]. While
traditional BCs perform adequately for moderate voltage requirements, their efficiency significantly declines
at high voltage gain demands. This is primarily due to increased duty cycles and associated switching losses,
which elevate stress on components and reduce overall performance [5].

To address these shortcomings, HGBCs have been introduced based on advanced configurations such
as coupled inductors, switched capacitor networks, and voltage multiplier circuits [6]], [7]. These topologies
achieve elevated output voltages while operating at moderate duty cycles, thereby minimizing component
stress. Nonetheless, maintaining voltage stability under dynamic operating conditions—particularly with
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fluctuating irradiance—continues to pose a significant control challenge that demands adaptive regulation
strategies.

Proportional integral derivative (PID) controllers are widely utilized in power electronic applications
due to their straightforward implementation and effective performance under stable conditions [8]. However,
their static gain structure limits adaptability to rapidly changing inputs, often resulting in overshoot, prolonged
settling times, and steady-state errors in nonlinear systems such as PV-powered HGBCs [9]. Additionally, PID
controllers typically require manual tuning, making them less suitable for environments subject to frequent or
unpredictable fluctuations.

To enhance control flexibility and precision, ANNs have emerged as a viable alternative to
conventional methods. Due to their ability to capture complex nonlinear mappings between system
variables, ANNs are well-suited for voltage regulation in power converter applications [[10Q]. Prior research
has demonstrated that ANN-based controllers can significantly improve both transient and steady-state
behavior in HGBCs [[11]]. Nonetheless, their effectiveness heavily depends on the network’s architecture and
hyperparameter configuration, which directly influence training outcomes and control accuracy.

To overcome these limitations, researchers have employed metaheuristic algorithms to automatically
fine-tune ANN parameters [[12]. Among these, rain optimization algorithm (ROA) has demonstrated strong
capabilities in avoiding local optima and achieving rapid convergence during training [13[]. Inspired by
the natural flow of raindrops across terrain surfaces, ROA has been effectively applied in optimizing neural
networks for various engineering applications [14]. Recent studies indicate that combining ROA with ANN
significantly enhances controller performance, particularly in terms of response time and output accuracy [15].

This paper proposes an ANN control strategy optimized using ROA to regulate the output voltage of a
transformerless HGBC in PV-based applications. The objective is to enhance tracking accuracy, minimize
overshoot, and achieve faster dynamic response under varying irradiance levels. ROA is employed to
adjust the ANN’s weights and biases during the training phase, resulting in a more robust and adaptive
control system. The effectiveness of the proposed approach is verified through a co-simulation environment
combining MATLAB and OrCAD, which enables accurate validation of both the control logic and hardware
behavior. Performance is evaluated against conventional ANN and PID controllers to demonstrate the achieved
improvements in realistic PV operating scenarios.

The rest of this paper is structured as follows: Section 2 presents the proposed methodology, covering
converter modeling and ROA-ANN controller design. Section 3 provides simulation results and a comparative
evaluation of controller performance across different scenarios. Section 4 summarizes the main findings and
outlines directions for future research.

2. METHODOLOGY

This section presents the configuration of a standalone PV system employing a transformerless
high-gain boost converter (HGBC) regulated by a ROA-optimized ANN controller. The control objective is
to maintain a stable output voltage despite fluctuations in irradiance. The ROA-ANN controller computes the
duty cycle in real time based on system feedback. The complete control structure is shown in Figure 1.
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Figure 1. Synoptic diagram of the co-simulated PV-fed HGBC system
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2.1. Model of the transformerless high-gain boost converter

High-gain DC-DC converters play a crucial role in PV applications by stepping up the inherently low
voltage of PV sources to levels compatible with connected loads or inverters [16]. The transformerless HGBC
considered in this study enhances voltage gain while reducing circuit complexity and power losses. Eliminating
the need for bulky magnetic components such as transformers not only reduces the overall size and cost of the
system but also improves its efficiency and reliability under fluctuating environmental conditions.

As illustrated in Figure 2, the HGBC topology comprises three inductors (L1, Lo, L3), two capacitors
(C1, C,), two diodes (D1, D,,), and three switching devices (S, S, S3). The converter is designed to operate
in continuous conduction mode (CCM), which facilitates consistent energy flow and stable DC output, even
under variable irradiance conditions [17]].

The converter operates in two distinct phases. During the first phase, when switches Sy, So, and S3
are turned ON, inductor L; is energized directly from the PV source, while inductors Ly and L3 are charged via
capacitor C'y. At this stage, diodes D; and D, are reverse-biased, effectively isolating the load and maintaining
the voltage level across C,,.

In the second phase, once the switches are turned OFF, inductor L; releases its stored energy to
capacitor C through diode D;, while inductors Lo and L3 discharge through diode D, to supply the output
stage. This switching pattern enables high voltage gain at moderate duty cycles, which helps minimize
conduction losses and extends the operational lifespan of the converter.

Applying the volt-second balance principle, the voltage gain of the converter is given by (1).

(1+D)

T i-Dp

Vi (D

Where D represents the duty cycle. This relationship demonstrates that the converter can attain substantial
voltage amplification without requiring excessively high duty ratios, thereby reducing component stress and
enhancing system reliability.
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Figure 2. Topology of the proposed transformerless HGBC

2.2. Structure of the ROA-optimized ANN controller

To maintain stable output voltage from the transformerless HGBC under fluctuating environmental
conditions, an ANN-based adaptive control approach is adopted. While conventional PID controllers offer
simplicity and ease of deployment, their limited adaptability in nonlinear and time-varying systems makes them
less effective under rapidly shifting irradiance conditions [18]], [19]. In contrast, ANNs possess the capability to
approximate complex nonlinear relationships and adjust dynamically to input variations, making them highly
suitable for voltage regulation in PV applications.

The implemented ANN is structured as a feedforward network designed to generate the optimal duty
cycle D for the HGBC. It processes four input signals: reference voltage (V;..¢), output voltage (Vo:), PV
voltage (V},,), and the voltage error defined as € = V.5 — V,y¢. These inputs enable the network to evaluate
the system’s real-time condition and make adaptive control decisions accordingly [20]. Sigmoid activation
functions are employed in the hidden layers due to their ability to capture nonlinear relationships [21]], while
the output layer produces a normalized value of D that directly controls the switching of the converter.

The training dataset was obtained through MATLAB—-OrCAD co-simulation by evaluating the system
under various irradiance levels and voltage scenarios. A supervised learning approach was employed, utilizing
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the backpropagation algorithm to minimize the mean squared error (MSE) during the training process.

n

MSE = % 3 (Di - Di)g 2)

=1

Where D; and D; represent the target and predicted duty cycles, respectively.

To enhance convergence performance and avoid entrapment in local optima, ROA is incorporated into
the ANN training process [22], [23]. This algorithm is used to optimize critical hyperparameters—including
learning rate, neuron allocation, and initial weight settings—that are typically chosen heuristically in standard
ANN configurations. Inspired by the natural flow dynamics of raindrops, ROA facilitates a balanced search
between global exploration and local exploitation within the solution space, as shown in Figure 3 [24]].

Figure 4 illustrates the training performance of the conventional ANN compared to the
ROA-optimized ANN. The ROA-enhanced model demonstrates faster convergence and achieves a lower
final error. Its adaptive learning capability helps prevent stagnation during training and supports better
generalization, which is particularly important in PV systems subject to significant environmental variability.

The progression of critical hyperparameters throughout the training process is depicted in Figure 5.
ROA adaptively modifies the learning rate and adjusts the neuron count, contributing to enhanced training
stability and improved performance [25]]. In comparison, fixed hyperparameter settings in conventional ANN
training can result in suboptimal convergence behavior or increased risk of overfitting.

The training workflow that incorporates ROA into the ANN optimization process is illustrated in
Figure 6. ROA starts by initializing a population of candidate solutions and progressively refines them based
on their mean squared error (MSE) performance. Through this iterative mechanism, the ANN controller is
guided toward generating optimal duty cycle values suitable for dynamic PV operating conditions.
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Figure 3. Convergence of ROA vs. conventional optimization during ANN training
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Figure 4. Training performance comparison between conventional ANN and ROA-optimized ANN
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By integrating the learning ability of ANN with the adaptive search efficiency of ROA, the proposed
control approach delivers precise tracking, rapid convergence, and strong robustness under fluctuating
irradiance conditions. These attributes establish it as a reliable solution for advanced DC voltage regulation
in PV-powered HGBC systems.
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Figure 5. Evolution of learning rate and neurons per layer: ROA vs. conventional ANN
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Figure 6. Workflow of ROA-integrated ANN training

3.  RESULTS AND DISCUSSION

This section provides a detailed evaluation of the transformerless HGBC system managed by the
ROA-optimized ANN controller. The performance assessment is carried out through a MATLAB-OrCAD
co-simulation environment, enabling the observation of both control behavior and circuit-level dynamics. The
analysis emphasizes output voltage regulation, transient response characteristics, and controller robustness
across four operating scenarios representative of real-world PV variations.

The evaluated PV system is configured to supply 2.2 kW using a 4S-2P module arrangement,
delivering 128 V at its maximum power point (MPP). This voltage is stepped up to 650 V by the HGBC,
operating at a switching frequency of 100 kHz. Key system parameters are provided in Table 1, while the
simulation scenarios used for performance evaluation are outlined in Table 2.

The performance of the ROA-ANN controller is compared against conventional ANN and PID
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controllers across the defined test scenarios. Four graphical results illustrate the dynamic responses under
different conditions, followed by a comprehensive summary in Table 3, which quantifies key performance
metrics for each control strategy.

Table 1. Standalone solar system parameters

Parameter Value
PV array Total power output (Ppy)  2204.16 W
Configuration 4S-2P
Voltage at MPP (Vi) 128V
Current at MPP (y,5) 17.22 A

Daily energy production 9.2 kWh/day

Annual energy production 3365 kWh/year
High-gain boost converter  Input voltage (V) 128V

Output voltage (Vout) 650V

Switching frequency (fs) 100 kHz

Table 2. Simulation scenarios for controller performance evaluation

Scenario Trradiance (W/m?) Reference voltage (V)
S1: Constant irradiance 1000 650

S2: Constant irradiance, variable reference 1000 500, 550, 600, 650
S3: Variable irradiance 300, 500, 800, 1000 650

S4: Variable irradiance, variable reference 300-1000 500-650

Table 3. Controller performance summary across all scenarios

Performance metric ROA-ANN  ANN PID

Rise time (s) < 0.1 0.6 > 1.5

Settling time (s) <0.3 0.7 > 1.5

Overshoot (%) <2 4-7 10-15

Tracking noise Very low Moderate High

Response to ref. shift Immediate ~ Acceptable ~ Overshoot + delay
Response to irradiance drop ~ Robust Mild sag Ripple + drift
Handling dual variation Excellent Acceptable  Unstable

Figure 7 shows the system’s dynamic behavior under scenario S1, which represents standard test
conditions with constant irradiance and reference voltage. The ROA-ANN controller exhibits a rapid transient
response, achieving a rise time below 0.1 s and maintaining zero overshoot—highlighting its high regulation
accuracy and system stability. This performance stems from the ROA’s ability to continuously optimize the
controller parameters in real time. In comparison, the conventional ANN requires approximately 0.6 s to
stabilize due to its static training limitations. The PID controller performs poorly in this scenario, exhibiting a
12% overshoot and persistent oscillations beyond 1.5 s, mainly due to its fixed gain configuration and limited
adaptability to the HGBC’s nonlinear dynamics.

Scenario S2, illustrated in Figure 8, evaluates the controllers’ ability to adapt to varying reference
voltages. The ROA-ANN demonstrates precise tracking of each reference shift with minimal steady-state error
and rapid convergence, emphasizing its strong generalization capability and responsiveness to dynamic inputs.
While the conventional ANN maintains reasonable accuracy, it exhibits noticeable delays during significant
transitions—such as from 500 V to 600 V—revealing the limitations of offline-trained architectures. The PID
controller performs inadequately in this scenario, showing overshoots of up to 15% and extended settling times,
indicative of its restricted adaptability under time-varying operating conditions.

Scenario S3, shown in Figure 9, examines system performance under varying irradiance levels with
a fixed reference voltage. The ROA-ANN controller consistently delivers stable and accurate output across all
irradiance conditions, including at low levels, demonstrating its robustness and adaptability to environmental
disturbances. In contrast, the conventional ANN exhibits slight deviations at 300 W/m?, attributed to limited
exposure to low-irradiance cases during the training phase. The PID controller once again underperforms,
showing ripple, voltage sag, and delayed response—issues that stem from its static control structure and
inadequate handling of input variability.
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In the final test scenario, S4, illustrated in Figure 10, both irradiance and reference voltage are
varied simultaneously to assess controller performance under compounded disturbances. The ROA-ANN
maintains fast, accurate, and stable tracking throughout, effectively handling the multivariable dynamics
without introducing steady-state error. This highlights its capability to generalize and adapt in highly dynamic
environments. The conventional ANN displays slower adaptation and increased output noise during concurrent
transitions, particularly under low irradiance conditions. The PID controller fails to regulate the output reliably,
exhibiting pronounced instability and large tracking errors, reaffirming its limitations in nonlinear systems
subjected to simultaneous fluctuations.

Across all test scenarios, the ROA-ANN controller consistently outperforms conventional ANN and
PID approaches in terms of rise time, settling response, noise attenuation, and tracking precision. Its resilience
under both reference voltage shifts and irradiance fluctuations highlights the effectiveness of ROA-driven
optimization in enhancing real-time control adaptability. These findings reinforce the suitability of ROA-ANN
architectures for practical PV applications that demand fast and reliable voltage regulation under dynamic
operating conditions.
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4. CONCLUSION

This study introduced a voltage regulation strategy based on an ROA-optimized ANN controller
for transformerless high-gain boost converters in standalone PV systems. The controller’s effectiveness
was validated through MATLAB-OrCAD co-simulation under multiple test conditions involving varying
irradiance and reference voltages. The results demonstrated that the ROA-ANN consistently outperformed
both conventional ANN and PID controllers in terms of dynamic response, tracking precision, and overall
robustness. These findings underscore the value of integrating metaheuristic optimization into neural network
training for adaptive control in nonlinear power electronic applications. Future work will explore experimental
validation and the extension of the proposed scheme to inverter-level control architectures.
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