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 This paper presents a methodology for optimizing the allocation and sizing 

of distributed generators (DG) in electrical systems, aiming to minimize 

active power losses on transmission lines and maintain bus voltages within 

permissible limits. The approach consists of two stages. First, a sensitivity-

based analysis is used to identify the optimal candidate bus or buses for DG 

placement. In the second stage, a new random number generation method is 

applied to determine the optimal DG sizing. Moreover, a ranking for the 

optimal locations and sizes is given in case the optimal location is 

unavailable in real-world scenarios. The proposed methodology is 

demonstrated through a straightforward algorithm and tested on the IEEE 

14-bus and IEEE 30-bus networks. Numerical simulations in MATLAB 

illustrate the effectiveness of the proposed approach in finding the optimal 

allocation of DG and the amount of active power to be allocated at the 

candidate buses, considering the inequality constraints regarding voltage 

limits and DG allowable power. The paper concludes with results, 

discussions, and recommendations derived from the proposed approach. 
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1. INTRODUCTION 

A distributed generator (DG) is a power source connected to an electrical system that generates 

electricity in quantities of kilowatts or more. These generators primarily rely on renewable energy sources, such 

as wind, water, geothermal, solar irradiance, and biomass [1], [2]. Due to the depletion of fossil fuel reserves 

and the need to reduce CO2 emissions, the use of renewable energy sources has significantly increased over the 

past two decades. Optimistic projections suggest that renewable energy could contribute up to 85% of the total 

energy production by 2050 [3]. Distributed generators (DGs) are typically integrated into existing power 

systems, rather than being part of the original design. As a result, several technical and economic challenges 

may arise when determining the optimal allocation and sizing of DGs in the electrical grid. These challenges 

may include technical factors such as changes in active power flow, power losses, bus voltage levels, reliability, 

and stability, as well as non-technical factors like right-of-way issues and social concerns, among others [4]. 

Various methodologies have been proposed to investigate this problem. Moravej et al. [5] employed 

the Pareto strength optimization technique to determine the optimal DG size. At the same time, a genetic 

algorithm was used to determine the optimal location of DGs in radial distribution systems. Similarly, [6] 

employed a sensitivity analysis of the Jacobian matrix to determine the optimal DG placement. However,  

https://creativecommons.org/licenses/by-sa/4.0/
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Dulău et al. [7] used the Newton-Raphson power flow method to calculate the active power losses at each bus 

while determining the best DG allocation in the electrical system. Shrivastava et al. [8] employed load flow 

analysis to determine the optimal size and location of DG; the proposed approach was applied to an IEEE 12-

bus radial power system. The primary objective of the work was to enhance the voltage profile and reduce 

overall active power losses. Further improvements in overall system stability and reductions in system losses 

were discussed in [9]. Ghosh et al. [10] employed the cuckoo search algorithm (CSA) to identify the optimal 

locations and sizes for DG units in a radial distribution system. The IEEE 33-bus system has been studied to 

minimize active power losses, enhance quality and reliability, and improve the voltage profile due to the 

allocation of DG. A similar approach was implemented in [11], where a multi-leader particle swarm 

optimization technique was used to evaluate the reduction in power losses and minimize emission pollution due 

to the allocation of DG in the electrical system. The same methodology was also tested on the IEEE 33-bus 

radial distribution system, as detailed in [12]. Yang et al. [13] applied multi-objective particle swarm 

optimization (MOPSO) to the IEEE 33-bus and IEEE 69-bus systems to determine the optimal allocation and 

sizing of DG units. 

Prakash and Lakshminarayana [14] employed particle swarm optimization (PSO) to determine the 

optimal sizing and location of DG units, aiming to minimize active power losses. The work in [15] focused 

on using PSO to enhance voltage stability and reduce power losses, which was tested in an IEEE 14-bus 

system. El-Ela et al. [16] employed both PSO and parallel cat swarm optimization (PCSO) to determine DGs' 

optimal sizing and placement. Karunarathne et al. [17] conducted a study aimed at reducing active power 

losses, improving voltage profiles, minimizing generation costs, and decreasing CO2 emissions associated 

with DGs. Elattar and Elsayed [18] used voltage source inverters (VSI) and PSO as optimization techniques 

to achieve optimal sizing and allocation of DGs. The modified moth flame optimization (MMFO) technique 

was applied in [19], while the ant colony algorithm (ACA) was used in [20]. Various indices, including the 

voltage deviation index (VDI), voltage stability index (VSI), and index vector method (IVM), were 

considered to minimize total active power losses and enhance the voltage profile, as introduced in [21]. 

Similar objectives using the dragonfly algorithm were presented in [22]. Azad et al. [23] addressed DGs' 

irregular and unstable output. The optimal sizing of DGs was achieved through Differential Evolution (DE), 

as introduced in [24], where the VSI was utilized to identify the optimal locations for DGs. Finally, the 

optimal location and sizing of DGs with minimum active power losses were determined using the bat 

algorithm (BA) based on the weighted sum method (WSM) in [25]. 

This paper uses sensitivity analysis to identify optimal candidate buses for the placement of DG. 

This analysis focuses on buses where the impact of real power losses, attributed to active power flow, has a 

maximum value. The optimal sizing of the DG is then determined using a new approach based on random 

number generation, facilitating rapid and effective convergence. This method accounts for both the voltage 

profile and the reduction of power losses in the electrical distribution system. The contribution of this paper 

is as follows: i) A Jacobian matrix-based formulation to analyze DG size impact on power flow in 

transmission lines; ii) A systematic framework is developed to find both optimal location and optimal size of 

DG in the power grid; iii) A descending order ranking of the best fit of optimal size of DG and location of the 

optimal bus from the power losses on transmission lines point of view is presented, i.e. from higher reduction 

achieved of power losses to the lowest reduction. To our knowledge, no other paper in the literature has 

provided this ranking system. This ranking system of buses is essential considering the possibility of 

unavailability of the optimal bus in real-world scenarios; other options may need to be further explored. 

The rest of this paper is structured as follows: Section 2 presents the problem formulation, supported 

by mathematical equations. Section 3 presents the solution for optimal location and sizing, along with the 

associated algorithm. In section 4, numerical examples are provided to demonstrate the effectiveness of the 

proposed approach. Section 5 includes an analysis and discussion of the results. Eventually, the conclusion is 

presented in section 6. 
 

 

2. PROBLEM FORMULATION 

Integrating DG into an existing power system influences power flow and impacts factors such as 

overall power losses, voltage profiles, and system stability [26]. Minimizing active power losses plays a 

crucial role in enhancing the power system's efficiency, stability, reliability, and economic viability. As a 

result, lower active power losses directly correlate with reduced per-kilowatt-hour production costs. This 

study aims to minimize total active power losses while ensuring that voltage levels at system buses remain 

within acceptable limits. Mathematically, this objective can be formulated as (1). 
 

𝑀𝑖𝑛. {𝑃𝑙(𝑡𝑜𝑡𝑎𝑙)} (1) 
 

Where 𝑃𝑙  is the total active power losses [MW]. 
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Subject to equality constraints as defined in (2) and (3). 
 

𝑃𝑖(𝑉, 𝜃) = 0 (2) 
 

𝑄𝑖(𝑉, 𝜃) = 0 (3) 
 

Where 𝑃𝑖  is the active power value at bus 𝑖 [MW], 𝑄𝑖  is the reactive power value at bus 𝑖 [MVAr] and the 

inequality constraints as in (4) and (5). 
 

|𝑉|𝑖
𝑚𝑖𝑛 < |𝑉|𝑖 < |𝑉|𝑖

𝑚𝑎𝑥 (4) 
 

𝑃𝐷𝐺 ≤ 𝑃𝐷𝐺(𝑎𝑙𝑙𝑜𝑤𝑒𝑑) (5) 
 

Where |𝑉|𝑖 is the voltage magnitude at bus 𝑖 [V], |𝑉|𝑖
𝑚𝑖𝑛  is the minimum limit of the voltage magnitude at 

bus 𝑖 [V], |𝑉|𝑖
𝑚𝑎𝑥  is the maximum limit of the voltage magnitude at bus 𝑖 [V], 𝑃𝐷𝐺(𝑎𝑙𝑙𝑜𝑤𝑒𝑑) is allowed active 

power value of DG can be installed at a specific bus [MW]. 

The total active power losses and the permissible DG power at a given bus can be calculated using 

(6) and (7), respectively. 
 

𝑃𝑙(𝑡𝑜𝑡𝑎𝑙) = ∑ 𝑃𝑙𝑖
𝑛
𝑖=1  (6) 

 

𝑃𝐷𝐺(𝑎𝑙𝑙𝑜𝑤𝑒𝑑) ≤ 𝑘𝑓 . 𝑃𝑀𝑎𝑥 . 𝐶𝑎𝑝 (7) 
 

Where 𝑃𝑙𝑖  is the active power losses at the bus 𝑖 [MW], 𝑘𝑓 is a factor that varies between 0 and 1, 

determining the allowable capacity of distributed generation relative to the maximum designed capacity at 

bus 𝑖, subject to the local regulations in each country 𝑃𝑀𝑎𝑥 . 𝐶𝑎𝑝. is the maximum power designed capacity of 

the power system [MW]. For any power system, the total active power loss can be determined as the 

algebraic sum of the losses at each bus, formulated in (8). 
 

𝑃𝑙𝑖 = ∑ ∆𝑉𝑖𝑘
2𝑛

𝑖=1 . 𝐺𝑖𝑘 (8) 
 

The voltage drops between any two buses, denoted as 𝑖 and 𝑘, for any inductive load is illustrated in 

Figure 1 [27]-[29] and can be mathematically formulated using the cosine theorem as shown in (9). 
 

∆𝑉2 = 𝑉𝑖
2 + 𝑉𝑘

2 − (2. 𝑉𝑖 . 𝑉𝑘. 𝑐𝑜𝑠(𝜃𝑖−𝜃𝑘)) (9) 
 

Substituting (9) into (8) yields the active power losses at the bus 𝑖 as in (10). 
 

𝑃𝑙𝑖 = ∑ 𝐺𝑖𝑘
𝑛
𝑖=1 . (𝑉𝑖

2 + 𝑉𝑘
2 − (2. 𝑉𝑖 . 𝑉𝑘 . cos( 𝜃𝑖 − 𝜃𝑘))) (10) 

 

Where ∆𝑉 is the voltage drop vector between buses 𝑖 and 𝑘, ∆𝑉 = ∆𝑉𝑟 + ∆𝑉𝑥, [V], ∆𝑉𝑟 is the voltage vector 

across the resistance between buses 𝑖 and 𝑘 [V], ∆𝑉𝑥 is the voltage vector across the inductance between 

buses 𝑖 and 𝑘 [V], 𝐺𝑖𝑘 is the conductance between buses 𝑖 and 𝑘, [1/𝛺], 𝜃𝑖 , 𝜃𝑘 are voltage phase angle at 

buses 𝑖 and 𝑘, respectively, [V], 𝑛 is the number of buses in the power system. 
 

 

 
 

Figure 1. Phasor diagram of the voltage drop between two buses 
 

 

3. PROBLEM SOLUTION 

The solution to the problem comprises two main components. The first component involves 

identifying the optimal candidate bus for DG allocation. The second component focuses on determining the 

optimal sizing of DG at that bus while considering local regulations that dictate the allowable percentage of 

DG power that can be installed in any area, substation, or region relative to their maximum designed 

capacity. This factor is referred to as 𝑘𝑓. The mathematical calculations assume that the admittances, voltage 
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magnitudes, and loads of the three-phase lines are identical and that the equality constraints [30] specified in 

(2) and (3) are satisfied. Consequently, the calculations are conducted for a single phase, as the calculations 

for the remaining phases will be the same. 
 

3.1.  Sensitivity-based for optimal DG location 

Sensitivity analysis [31] is used to identify the optimal location for DG. This systematic procedure 

identifies the nodes with the most significant impact on real power losses resulting from active power flow. 

This has been mathematically proven in references [6], [7], [18] and is presented in (11). 
 

[

𝜕𝑃𝑙

𝜕𝑃
𝜕𝑃𝑙

𝜕𝑄

] = [

𝜕𝑃

𝜕𝜃

𝜕𝑃

𝜕|𝑉|

𝜕𝑄

𝜕𝜃

𝜕𝑄

𝜕|𝑉|

]

−1

· [

𝜕𝑃𝑙

𝜕𝜃
𝜕𝑃𝑙

𝜕|𝑉|

] = [𝐽]−1 · [

𝜕𝑃𝑙

𝜕𝜃
𝜕𝑃𝑙

𝜕|𝑉|

] = [
𝐽1 𝐽2

𝐽3 𝐽4
]

−1

· [

𝜕𝑃𝑙

𝜕𝜃
𝜕𝑃𝑙

𝜕|𝑉|

] (11) 

 

Where 𝐽, 𝐽−1 are Jacobian matrix and the Jacobian matrix inverse of the Newton–Raphson power flow are 

matrices with ((𝑛 − 1)(𝑛 − 1)) elements, [
𝜕𝑃𝑙

𝜕𝑃
] , [

𝜕𝑃𝑙

𝜕𝑄
] are partial derivatives of the real power losses; for the 

active and reactive power flow, they are vectors with ((𝑛 − 1)1) elements, [
𝜕𝑃

𝜕𝜃
] , [

𝜕𝑃

𝜕|𝑉|
] are partial 

derivatives of the real power for bus voltage angle and magnitude, they are matrices with ((𝑛 − 1)(𝑛 − 1)) 

elements, [
𝜕𝑄

𝜕𝜃
] , [

𝜕𝑄

𝜕|𝑉|
] are partial derivatives of the reactive power to bus voltage angle and magnitude; they 

are matrices with ((𝑛 − 1)(𝑛 − 1)) elements. 

The partial derivative 
𝜕𝑃𝑙

𝜕|𝑉|
 𝑎𝑛𝑑 

𝜕𝑃𝑙

𝜕𝜃
 in (11) can be obtained by differentiating (10) with respect to the 

voltage magnitude and voltage angle, respectively. The resulting products are expressed in (12) and (13). 
 

𝜕𝑃𝑙𝑖

𝜕|𝑉𝑖|
= ∑ 𝐺𝑖𝑘

𝑛
𝑖=1  . [ 2(|𝑉𝑖| − (|𝑉𝑘|. 𝑐𝑜𝑠( 𝜃𝑖 − 𝜃𝑘))] (12) 

 
𝜕𝑃𝑙𝑖

𝜕𝜃𝑖
= ∑ 𝐺𝑖𝑘

𝑛
𝑖=1 . [2. |𝑉𝑖|. |𝑉𝑘|. sin(𝜃𝑖 − 𝜃𝑘)] (13) 

 

After some mathematical arrangement of (11), a vector with ((𝑛 − 1)1) elements are obtained, representing 

the real power losses due to active power flow, as in (14). 
 

[
𝜕𝑃𝑙

𝜕𝑃
] = [

𝜕𝜃

𝜕𝑃
] . [

𝜕𝑃𝑙

𝜕𝜃
] + [

𝜕|𝑉|

𝜕𝑃
] . [

𝜕𝑃𝑙

𝜕|𝑉|
] (14) 

 

The elements with the maximum value in (14) indicate the bus number with the highest impact on 

active power losses from active power flow. In other words, installing DG on this bus will significantly 

reduce active power losses. Consequently, this vector can be rearranged in descending order to identify the 

buses with the highest substantial effect on active power loss reduction. The procedure for determining the 

optimal buses for 𝑃𝐷𝐺  allocation [30], [32] can be summarized as follows: i) Input the system data and 

execute the power flow program; ii) Calculate the Jacobian matrices [𝐽1,  𝐽2, 𝐽3, 𝐽4]; iii) Determine [
𝜕𝑃𝑙

𝜕|𝑉|
] and 

[
𝜕𝑃𝑙

𝜕𝜃
] using (10) and (11); iv) Compute [

𝜕𝑃𝑙

𝜕𝑃
] based on (14), excluding candidate buses where DG installation 

is impractical for various reasons (e.g., proximity to buildings and roads); and v) Select the bus with the 

highest value of [
𝜕𝑃𝑙

𝜕𝑃
] as the first candidate for DG allocation [33], [34], followed by the bus with the second-

highest value, and so on. 

 

3.2.  Optimal sizing of DG 

The amount of power from the DG injected at any candidate bus (𝑖) is the standardized size of (7), 

denoted as (𝑃𝐷𝐺𝑆𝑖), and can be determined using a new algorithm based on random number generation with 

rapid convergence, as (15). 
 

𝑃𝐷𝐺𝑖 =  2𝛼 + (𝑃𝐷𝐺𝑆𝑖)𝑖𝑛𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒  (15) 
 

Where 𝛼 is a set of 100 distinct real numbers randomly chosen from the interval [−10, 𝑙𝑜𝑔2(𝑃𝐷𝐺(𝑎𝑙𝑙𝑜𝑤𝑒𝑑))]. 

The value 2−10 denotes the minimum number necessary to meet the specified tolerance requirement, 
(PDGSi)𝑖𝑛𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒  is the initial DG capacity at the onset of the optimization process, measured in 

megawatts (MW). 
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Steps for determining optimal sizing using a random number generation-based algorithm: 

i) Generate a set of random numbers represented by 𝛼. 

ii) For each α, add the active power, as defined in (15), to a selected bus (optimal location) identified in 

section 3.1. 

iii) Update the Jacobian matrix for each 𝛼 using the N.R method. 

iv) Calculate the [
𝜕𝑃𝑙

𝜕𝑃
] for all generated 𝛼 and for every bus in the system to find the sensitivity of DG at the 

selected. This is formulated in the following matrix: 
 

[

𝜕𝑃𝑙11

𝜕𝑃
⋯ ⋯

𝜕𝑃𝑙1𝑟

𝜕𝑃

⋮ ⋱ ⋱ ⋮
𝜕𝑃𝑙𝑛1

𝜕𝑃
⋯ ⋯

𝜕𝑃𝑙𝑛𝑟

𝜕𝑃

]

(∗)

  

 

v) Find the max value of [
𝜕𝑃𝑙

𝜕𝑃
] in the above matrix, denoted (*) and denote it as 𝛼𝑚𝑖𝑛. 

vi) Update the (*) matrix after adding the new injected power from DG at the optimal location from step 5. If 

the new (*) matrix has a different row index from the min value of [
𝜕𝑃𝑙

𝜕𝑃
] (𝛼𝑚𝑎𝑥) than in step 5, i.e., 

pointing to a different optimal location (optimal bus), then update the optimal location info based on the 

new 𝛼𝑚𝑎𝑥. 

vii) The values of 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 are taken as a reference to regenerate a new random value, as shown in (16). 
 

𝛼 = 𝛼𝑚𝑖𝑛 + (𝛼𝑚𝑖𝑛 − 𝛼𝑚𝑎𝑥) (16) 
 

viii) Repeat the calculation as in (15) until the tolerance between 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 has the same value (𝛼𝑚𝑖𝑛 ≅
𝛼𝑚𝑎𝑥 ) or until the calculation obtains the required tolerance, i.e. ∆(𝑃𝐷𝐺𝑆𝑖) = 1 × 10−4 𝑘𝑊. 

ix) The algorithm is stopped if the allowed active power is achieved, as in (7). Otherwise, proceed to step 2 

in section 3.1 (new optimal location for the updated system after adding the DG, as outlined in the 

previous steps). 

The proposed approach's solution algorithm is illustrated in a flowchart shown in Figure 2. 
 

 

 
 

Figure 2. Allocation and sizing of DG 
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4. NUMERICAL EXAMPLE 

The proposed method is tested on two standard power systems: the IEEE 14-bus and IEEE 30-bus 

systems [35], for which data were obtained from [36], [37], respectively. The single-line diagram of the IEEE 

14-bus system is shown in Figure 3(a), while Figure 3(b) illustrates the single-line diagram of the IEEE 30-

bus system. The calculations presented below are specific to the IEEE 14-bus system; however, the same 

calculations are also conducted for the IEEE 30-bus system. The test analyses of the IEEE 14-bus system are 

presented as follows. 

A test is conducted based on sensitivity analyses (section 3.1), the buses with max. [
𝜕𝑃𝑙

𝜕𝑃
] is arranged in 

descending order and is presented in Table 1. As shown in Table 1, bus number 3 is the best candidate for DG 

allocation, followed by bus number 14 as the second highest, and so on. The addition of more DG power is 

affecting the voltage magnitude and the voltage angle, as presented in Figure 4. This improvement in the voltage 

magnitude and the decreased voltage angle will affect the inequality constraints in (3) and (4). Table 2 

summarizes the determination of the optimal location and sizing of DG for the tested IEEE 14-bus system, 

following the flowchart in Figure 2. Conditions (5) and (7) were maintained during the optimization procedure. 
 

 

 
 

(a) (b) 
 

Figure 3. Single-line diagram for (a) IEEE 14-bus and (b) IEEE 30-bus systems 
 

 

  
(a) (b) 

 

Figure 4. For IEEE 14-bus: (a) voltage magnitude and (b) voltage angle for each bus 
 

 

Table 1. Values of voltage magnitude and voltage angle for IEEE 14-bus 
Bus 3 14 12 4 7 8 13 10 9 11 6 5 2 
𝜕𝑃𝑙

𝜕𝑃
 

0.1338 0.1140 0.1086 0.1066 0.1057 0.1057 0.1056 0.1056 0.1052 0.1029 0.0998 0.0906 0.0595 

 
 

Table 2. The number of distribution generators added to the IEEE 14-bus 
Bus number DG [MW] Bus number DG [MW] 

3 58.2832 4 2.4629 
14 8.0923 10 1.0049 

12 5.1334   
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5. RESULTS ANALYSIS 

The paper presents a technique for determining distributed generation's optimal sizing and allocation 

DG. Sensitivity analyses based on the Newton-Raphson method are employed. The proposed technique was 

tested on the IEEE 14-bus and IEEE 30-bus systems. Local regulations determining the allowable amount of 

DG to be installed in these areas are considered, represented by the 𝑘𝑓 factor, which is equal to 0.3 in Jordan. 

This factor has been taken into consideration while conducting the calculations using MATLAB software. 

The introduced method shows that the active power loss for the IEEE 14-bus system is reduced from 13.593 

MW to 5.554 MW, representing a reduction of approximately 59.14%. Additionally, the reactive power 

losses are reduced from 56.910 MVAr to 26.803 MVAr, corresponding to a reduction of about 52.9% as 

shown in Figure 5(a). The same procedure applies to the IEEE 14-bus system as to the IEEE 30-bus system. 

The reduction of power losses due to the allocation of DG in the IEEE 30-bus system is presented  

in Figure 5(b). Allocating DGs reduces the total active power losses from 17.528 MW to 7.260 MW, 

representing a reduction of approximately 58.58%. Additionally, the reactive power losses are reduced from 

68.888 MVAr to 32.421 MVAr, corresponding to a reduction of about 52.94%. Figures 6(a) and 6(b) present 

the effect of DG allocation on voltage magnitude and angle, respectively. 

The priority ranking for each iteration is significant in achieving this work's objective. For each 

iteration, the selected bus is chosen based on the highest priority and inserts the appropriate amount of active 

power into the network. Table 3 lists the priority ranking for each iteration of the IEEE 14-Bus system. The 

buses in the first column are ordered to represent the optimal location of the DG from active power losses on 

transmission lines point of view, from lower active power losses to the highest. The size of the DG installed on 

a given bus is represented in the third column, If the chosen optimal bus is introduced for the first time, then it 

will start from zero to its optimal size x, i.e. 0→x, if the same bus is chosen in a following rank, then the optimal 

DG size on that bus for that rank will start from its previous optimal size x to the new optimal size y, i.e. y→x. 

Moreover, the priority ranking can be utilized with different values of 𝑘𝑓 without rerunning the algorithm to 

find the optimal sizing and location. Also, priority ranking helps create a decision-making model for prioritizing 

DG technologies and their costs. Finally, the theoretical components along with the developed software serve as 

effective tools in determining where to allocate distributed generation (DG) and what size to install. 
 
 

(a) 

 

(b) 

 
 

Figure 5. Active and reactive power losses before and after the installed DG, for (a) IEEE 14 and (b) IEEE 30 
 

 

(a) 

 

(b) 

 
 

Figure 6. For IEEE 30-bus: (a) voltage magnitude and (b) voltage angle for each bus 
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Table 3. Priority ranking for IEEE 14-bus 
Bus Priority rank Size of DG (MW) Bus Priority rank Size of DG (MW) 

3 1 0→40.0346 14 16 5.0728→6.0748 
14 2 0→1.0164 3 17 50.7823→52.0289 

3 3 40.0346→41.4819 12 18 2.0327→3.0365 

14 4 1.0164→2.0370 3 19 52.0289→53.0600 
3 5 41.4819→44.6364 14 20 6.0748→7.0879 

14 6 2.0370→3.0395 3 21 53.0600→54.1525 

3 7 44.6364→45.6736 12 22 3.0365→4.1120 
14 8 3.0395→4.0424 3 23 54.1525→55.2012 

3 9 45.6736→47.2308 14 24 7.0879→8.0923 

14 10 4.0424→5.0728 3 25 55.2012→56.2638 
3 11 47.2308→48.2746 12 26 4.1120→5.1334 

12 12 0→1.0014 3 27 56.2638→57.2643 

3 13 48.2746→49.7733 10 28 0→1.0049 
12 14 1.0014→2.0327 4 29 0→2.4629 

3 15 49.7733→50.7823 3 30 57.2643→58.2832 

 
 

6. CONCLUSION 

The approach presented in this study aims to determine the optimal location and size of DG to 

minimize total active power losses in the system. A sensitivity analysis is proposed to identify the optimal DG 

location to achieve this objective. At the same time, a novel approach based on random number generation is 

employed to determine the optimal DG size. The proposed method and the implemented algorithm ensure rapid 

and effective convergence to the final solution. The proposed approach is tested on IEEE 14 and IEEE 30 bus 

systems to evaluate its effectiveness. The numerical results demonstrate the robustness and efficiency of this 

methodology. Specifically, the approach reduces total active power losses in IEEE 14 and IEEE 30 buses by 

approximately 59.14% and 58.58%, respectively, while total reactive power losses are reduced by about 52.9% 

and 52.94%, respectively. However, unlike the current work, which focuses solely on minimizing active power 

losses, this approach can be extended to minimize both active and reactive power losses. This expansion, 

however, presents a significant challenge and suggests a direction for future research. 
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