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 Temperature fluctuations, overcharging, and over-discharging are all issues 

that can cause fast deterioration, capacity loss, and thermal runaway in 

lithium-ion batteries (LIBs). To overcome these challenges, a hybrid model 

combining a stacked recurrent neural network (SRNN) and bidirectional 

long short-term memory (biLSTM) is presented for a reliable state of health 

(SoH) estimate. This model finds subtle patterns in battery data using SRNN 

layers to capture sequential dependencies and biLSTM modules to solve 

long-term temporal correlations while avoiding vanishing gradient concerns. 

The effectiveness of model is assessed by performance measures such as 

root mean square error (RMSE), mean absolute error (MAE), and maximum 

error (MAX), which demonstrate its superiority for precise SoH estimation. 

The stacked RNN-based SoH estimation achieves superior accuracy, with 

RMSE, MAE, and MAX error levels of 1.5%, 0.8%, and 4.84%, 

respectively, compared to GRU’s higher errors (3.8%, 3%, and 5.5%). 

Stacked RNN hierarchically processes sequential battery data, effectively 

capturing complex temporal relationships, and ensuring accurate and reliable 

SoH estimation for LIBs. 
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1. INTRODUCTION 

To combat climate change and achieve net-zero objectives, around the world are enacting tougher 

emissions restrictions, carbon pricing, green infrastructure expenditures, renewable energy targets, and 

encouraging environmentally conscious behaviors [1]-[4]. Efforts to electrify industries that depend on 

fossil fuels, such as transportation, emphasize the use of green technology, EVs, energy storage systems, 

and renewable energy for low-carbon, sustainable industrial operations globally [5]-[10]. Advanced energy 

storage systems are required to accommodate the rising demand for renewable energy, enhance grid 

stability, permit real-time applications, reduce carbon emissions, and boost efficiency all of which are 

important for the effective incorporation of clean energy sources [11]. The industry is led by lithium-ion 

batteries (LIBs) because of their outstanding performance, quick technical development, and high 

efficiency for a variety of uses [12]-[15]. 

State of charge (SoC) and state of health (SoH) predictions are improved when fiber Bragg  

grating (FBG) sensors are paired with deep neural networks (DNNs) and long short-term memory (LSTM) 

models. To lower mistakes and boost dependability, a hybrid machine learning framework combines 

Gaussian process regression with convolutional neural networks (CNNs) [16]. LSTM and Feedforward 
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neural networks (FNN) are two examples of machine learning models used in prognostics to estimate the 

SoH of LIBs. 

Over fifty cycles, the model showed a 6% error rate, indicating the possibility of a precise SoH 

estimation. A new preprocessing technique based on SoC is also advantageous for the usage of simpler 

models, including feedforward neural networks (FNNs) [17]-[20]. Particularly when dealing with limited 

datasets, this strategy improves the performance of SoH predictions and outperforms conventional time-

domain methods, demonstrating its usefulness in practical applications. Data-driven approaches for 

estimating SoH of LIBs often leverage algorithms like K-nearest neighbors (KNN) to process partial 

charge-discharge current sequences [21]. These techniques enable rapid learning and high generalization, 

as demonstrated using an official dataset. combining convolutional neural networks (CNN) with LSTM 

networks enhances the accuracy of SoH assessments and improves predictions for remaining useful life 

(RUL) [22]. 

These models improve the precision of SoH forecasts by analyzing intricate deterioration patterns. 

One of the most important tasks for improving battery management is estimating SoH of LIBs. According 

to recent research, hybrid approaches such as the CNN-LSTM model perform better in feature extraction 

than more conventional methods like K-means clustering [23]. For SoH estimation, several machine 

learning approaches were examined in [24], including random forest, support vector regression (SVR), 

polynomial regression, and multiple linear regression. SVR, which used NASA datasets for analysis and 

partial charging times for feature selection, produced the best results out of all of them. To increase SoH 

accuracy, a wavelet transform-based technique has also been created. Wang et al. [25] demonstrated the 

use of LSTM networks for managing nonlinear data related to voltage and temperature changes, 

significantly improving accuracy to 98.92%. 

This performance surpassed traditional normalization techniques. LSTM networks, a type of 

recurrent neural network (RNN), excel in capturing long-term dependencies and sequential patterns in time-

series data. Their ability to model complex, nonlinear relationships makes them particularly effective in 

dynamic environments, such as voltage and temperature fluctuations, often seen in battery management 

systems and energy conversion systems. This method offers more robust predictions compared to 

conventional approaches, which may struggle with nonlinearity. The SoH of LIBs can be accurately 

predicted using hybrid stacked RNNs and LSTM networks, especially in their bidirectional version. Deeper 

learning is made possible by the layered design, which can identify intricate correlations in battery data. 

The performance and safety of LIBs are impacted by temperature variations, overcharging, and 

over-discharging. biLSTMs enhance SRNNs ability to process sequential data by addressing the vanishing 

gradient issue, which is essential for managing long-term dependencies. SRNNs discover patterns from both 

past and future inputs. By modelling nonlinear, dynamic aspects of battery performance, SRNN can enhance 

SoH predictions as it can accurately interpret temporal variations in battery health over time. For precise 

LIBs SoH estimation, the main contributors developed a hybrid SRNN-biLSTM model that performs better 

than GRU in RMSE, MAE, and MAX errors and effectively captures temporal dependencies. The 

organization of the paper is outlined as follows: The ability of the hybrid RNN and biLSTM network to 

forecast the battery's SoH is examined in section 2. The findings and a thorough examination of SoH estimate 

methods are covered in section 3, which also compares various approaches and their practicality. The main 

conclusions are finally outlined in section 4, which highlights the need for precise SoH estimation for battery 

management system optimization. 

 

 

2. PROPOSED SRNN-BILSTM MODEL 

To efficiently estimate SoH of LiBs, a model combining a hybrid stacked recurrent neural network 

(SRNN) and bidirectional long short-term memory (biLSTM) networks has been developed. This method 

tackles the intricate and nonlinear aspects of battery data, such as temperature and voltage variations, which 

have significant effects on battery performance over time. The model can learn from previous battery 

performance and make precise predictions about future states because of the RNN component's exceptional 

ability to discern temporal correlations from sequential data. Long-term dependencies, however, are 

frequently problematic for ordinary RNNs because of problems like vanishing gradients. This restriction is 

lessened with the introduction of the biLSTM network, which does both forward and backward data analysis. 

By using a two-way approach, the model is better able to identify subtle patterns and correlations in the data. 

Utilizing the bidirectional nature allows the network to have a more comprehensive understanding of the 

temporal linkages that are present, which is essential for an accurate estimate of SoH. The incorporation of 

biLSTM into the hybrid stacked RNN model facilitates long-term memory preservation, which is crucial for 

accurately estimating the battery's overall health and remaining usable life. This method handles the dynamic 

and nonlinear behavior of LiBs, resulting in more reliable and accurate SoH evaluations. 
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To ensure that the model can manage the complexities of battery data while generating precise 

predictions on the battery's performance and health, RNN and biLSTM networks are combined as shown in 

Figure 1. The assessment of the state of health (SoH) of LiBs has advanced significantly using the hybrid 

stacked RNN and biLSTM network model, which makes use of state-of-the-art deep learning techniques. The 

temporal dependencies and long-range correlations included in battery performance data are efficiently 

captured by this approach, improving prediction accuracy. The model's input parameters, which include 

temperature, voltage, and current, are important markers of a battery's condition. The stacked RNN layers 

process these parameters, extracting sequential features, and the biLSTM layer examines these inputs both 

forward and backward. To produce more accurate SoH predictions, the model must completely comprehend 

the links between previous and future battery states, which is ensured by this bidirectional processing. The 

hybrid stacked RNN and biLSTM methodology provides a more reliable solution than standard techniques, 

which frequently find it difficult to manage the intricate and nonlinear behavior of LiBs. The model may 

better manage the complex dynamics of battery performance by utilizing biLSTM capacity to capture 

bidirectional temporal patterns and maintain long-term relationships. 

Consequently, this technique improves the accuracy of SoH forecasts by offering more accurate 

assessments of a battery's health condition. Predictive maintenance applications and real-time battery 

monitoring are ideal uses for the suggested architecture. It is perfect for ongoing battery health monitoring 

due to its capacity to handle sequential data and consider bidirectional temporal trends. In addition to 

increasing the SoH estimation's accuracy, the use of this model helps Li-ion batteries last longer and be safer 

by facilitating proactive management and prompt repair. 

 

 

 
 

Figure 1. Architecture of proposed SRNN-biLSTM network 

 

 

3. RESULTS AND DISCUSSION 

The stacked RNN-biLSTM model has demonstrated significant improvements in SoH prediction 

accuracy when compared to conventional techniques such as GRU networks in MATLAB simulations. In 

addition to lowering error rates in SoH estimations, the bidirectional nature of the biLSTM in conjunction 

with stacked RNN layers allows for enhanced analysis of dynamic battery data, including voltage, current, 

and temperature. The results of these simulations indicate that the hybrid model is highly accurate in 

forecasting capacity deterioration, charge/discharge behavior, and battery life. This model can be simulated 

with MATLAB/Simulink, which makes it simple to integrate deep learning methods and evaluate different 

hyperparameters. The battery management system (BMS) and National Renewable Energy Laboratory 

(NREL) datasets are frequently utilized for SoH estimate assignments because they include real-world 

battery data that depict a range of operating situations and degradation scenarios. 
 

3.1.  Training system 

The SoH of a LIB steadily declines as the number of cycles rises. Changes in the chemical makeup 

of the electrodes, elevated internal resistance, and battery capacity deterioration are the main causes of this 

reduction. Battery wear occurs with every cycle of charging and discharging, which lowers the battery's 

capacity to retain charge and overall efficiency. Shorter battery life, slower charging, and lower output power 

are therefore all shown by the SoH estimate, which shows a progressive deterioration in the battery's 

performance over time. In the GRU network, the SoH estimation for the WISTAR-H-PHS04 battery pack 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Accurate state of health estimation using hybrid algorithm for electric vehicle … (Rajesh Kumar Prakhya) 

1441 

cells decreases from 93% to 68% as the number of cycles rises. The low capacity of the Gated Recurrent Unit 

(GRU) to capture dependencies time can be a drawback. 

As the battery goes through more cycles, the estimation accuracy decreases because GRU is not as 

good at identifying long-range correlations in battery data as it is at identifying short-term trends. As a result, 

overall performance can suffer from inaccurate predictions about the battery's condition as it develops. The 

SoH estimation of the WISTAR-H-PHS04 battery pack cells in response to the rising number of cycles, as 

seen in Figure 2(a), shows a reduction from 93% to 68% utilizing the GRU network. Compared to more 

complex models like LSTMs, the fundamental disadvantage of the GRU is its limited capacity to capture 

long-term relationships. Long-term fluctuations in battery data can prove difficult for GRUs to learn across 

many cycles, despite their computational efficiency and ease of training. As a result, SoH calculations 

become less accurate as the battery develops and experiences deterioration. Similarly, the stacked SRNN-

biLSTM network has been shown in Figure 2(b) to minimize degradation from 95% to 69% when compared 

to the GRU network. 

One of the primary advantages of SRNN-biLSTM over GRU is its ability to capture both short-term 

and long-term data dependencies. The stacked RNN layers boost the model's capacity to recognize subtle 

patterns in battery performance by allowing it to comprehend sequential input at several levels of abstraction. 

The model is better equipped to comprehend the entire temporal dynamics of the battery's activity since the 

biLSTM component offers bidirectional processing, which enables the model to include both past and future 

data. This is especially crucial in SoH estimation as degradation patterns change over time and historical 

occurrences impact future states. As the battery experiences more cycles, GRU networks, despite their 

efficiency, strength not be able to capture these complex relationships, leading to decreased accuracy. 

 

 

 
 

 

  
(a) (b) 

 

Figure 2. SoH (%) estimation Vs cycle life for (a) GRU network and (b) proposed RNN-biLSTM network 

 

 

The estimating capacity of GRU-based SoH estimation decreases with increasing temperature; for a 

temperature increase of 0.005 °C, the voltage drops to 4 V as shown in Figure 3(a). The suggested SRNN-

biLSTM approach, on the other hand, keeps voltage levels steady at 4.2 V as depicted in Figure 3(b) during 

SoH estimation. The SRNN-biLSTM has an advantage over GRU since it is capable of understanding 

intricate nonlinear correlations between battery parameters like temperature, voltage, and current. By 

processing sequential data at many abstraction levels, the stacked RNN layers improve the ability to identify 

minute trends in the impact of temperature on battery health. In the meanwhile, the biLSTM network 

captures both the past and future battery performance states by analyzing bidirectional temporal relationships. 

The model is more resilient to temperature changes because of this two-pronged strategy, which also keeps 

voltage prediction from degrading. In contrast, GRU networks are less able to forecast battery performance 

under different heat settings since they do not have bidirectional and multilayered processing capabilities. 
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(a) 

 

(b) 

 
 

Figure 3. Effect of temperature for (a) GRU network and (b) proposed SRNN-biLSTM network 
 

 

3.2.  Validation system 

The validation mechanism assures SoH estimate accuracy by testing models against previously 

unknown data and demonstrating dependability under a variety of operational situations. Figure 4(a) illustrates 

that the GRU network has a considerable gap between the preferred and reference SoH estimate levels, resulting 

in high error values. This is due to GRU networks' shortcomings, which include an inability to efficiently capture 

long-range relationships and subtle nonlinear patterns in battery data. GRUs, while computationally efficient, 

have difficulty dealing with complicated temporal linkages and dynamic behaviors, resulting in erroneous SoH 

estimations. This inaccuracy has an impact on the battery system's dependability and causes more inaccuracies 

across cells under various operational conditions. In contrast, the proposed SRNN-biLSTM network, as shown in 

Figure 4(b), significantly reduces these errors while ensuring correct SoH estimation. The SRNN layers improve 

the model's ability to interpret sequential input by extracting multi-level features, whereas the biLSTM does 

bidirectional analysis, capturing past and future temporal trends. 

This hybrid design enables the SRNN-biLSTM to better handle complicated and nonlinear battery 

behavior than the GRU, resulting in higher SoH estimate accuracy. Accurate SoH forecasts increase battery 

efficiency, dependability, and operational safety, making the SRNN-biLSTM the best option for battery 

monitoring and predictive maintenance. The error metrics for GRU-based SoH estimation indicate RMSE, 

MAE, and MAX error values of 3.8%, 3%, and 5.5%, respectively, which are much greater than those of the 

suggested SRNN-biLSTM-based SoH estimation, which has RMSE (1.5%), MAE (0.8%), and MAX 

(4.84%). This improvement is attributed to the benefits of the proposed SRNN-biLSTM model. The stacked 

RNN layers effectively extract hierarchical features from consecutive battery data, allowing for a better 

comprehension of nonlinear interactions. Furthermore, the biLSTM network processes input in both forward 

and backward directions, catching bidirectional temporal relationships that GRU networks fail to attend. 

This dual processing capacity provides an enhanced overview of the battery's activity, resulting in 

higher estimation accuracy. The hybrid SRNN-biLSTM approach is also more effective in preserving long-

term dependencies, making it perfect for dealing with the complex and dynamic nature of LIBs. The SRNN-

biLSTM model significantly improves SoH estimation accuracy, reducing RMSE (1.5%), MAE (0.8%), and 

MAX (4.84%) errors while maintaining voltage stability and capturing long-term dependencies better than 

GRU. The SRNN-biLSTM model enhances SoH estimation accuracy by capturing bidirectional temporal 

relationships, mitigating GRU limitations, and maintaining stable voltage under temperature variations for 

improved battery reliability. As a consequence, it assures reduced error values, increasing the reliability and 

accuracy of SoH estimation, which directly leads to better battery performance and safety. Table 1 presents 

the error analysis comparing GRU and the proposed SRNN-biLSTM algorithms, highlighting the superior 

accuracy of the proposed SRNN-biLSTM. 
 

 

Table 1. Error analysis of GRU and proposed SRNN-biLSTM algorithms 
Algorithm RMSE MAE MAX 

GRU 3.8% 3% 5.5% 

Proposed SRNN-biLSTM 1.5% 0.8% 4.84% 
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Figure 4. %SoH and %error of cell 1, Cell 2, Cell 3, Cell 4, Cell 5, and Cell 6 for  

(a) GRU and (b) proposed SRNN-biLSTM network  
 

 

4. CONCLUSION 

The objective of the research is to create a unique hybrid model that can generate accurate SoH 

estimations of batteries by combining the strengths of stacked RNN (SRNN) and biLSTM networks. In the 

proposed SRNN-biLSTM technique, the stacked RNN captures temporal dependencies and hierarchical 

characteristics from sequential data, while the biLSTM network resolves both long- and short-term 

relationships by processing data bi-directionally. This hybrid construction offers reliable performance when 

recording the complicated and nonlinear characteristics of LIBs. The training approach is broad, consisting of 
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both training and validation sets. The training set improves the model in learning battery data patterns and 

optimizing network parameters, while the validation set ensures the model generalizes efficiently, lowering 

the possibility of overfitting. 

After training, the model's performance on the test set is tested using significant metrics such as 

RMSE, MAE, and MAX error. The proposed SRNN-biLSTM network effectively outperforms standard 

approaches in SoH estimation, with lower error values and higher prediction accuracy. This framework not 

only improves battery monitoring, but also adds to increased battery system efficiency, safety, and 

dependability, making it an effective instrument for real-time applications and predictive maintenance. The 

GRU-based SoH estimation has RMSE, MAE, and MAX error levels of 3.8%, 3%, and 5.5%, respectively, 

whereas the proposed SRNN-biLSTM has much lower RMSE (1.5%), MAE (0.8%), and MAX (4.84%). The 

SRNN-biLSTM is preferable because it can handle sequential battery data hierarchically through stacked 

RNN layers while also capturing bidirectional temporal relationships using biLSTM. This allows the model 

to handle complicated and nonlinear battery characteristics more efficiently, resulting in lower errors. The 

SRNN-biLSTM provides more precise and dependable SoH estimation, which improves battery 

performance, efficiency, and safety in real-time applications. 
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