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1. INTRODUCTION

The dual-star induction motor is currently attracting increasing interest in high-power applications
due to the accessibility of its rotor and the remarkable performances it develops with vector control techniques.
It is usually made up of two sets of windings to operate at low and high voltage [1], [2]. This versatility gives
it a certain flexibility and allows it to be used in different environments and with different energy sources [3].
The vector control technique was developed in the early 1970s by Blaschke and is based on classical speed
regulators (proportional, integral, and derivative (PID) regulators). However, this technique has difficulties in
controlling transient speeds and parametric variations of the machine; in order to overcome this handicap,
researchers have introduced artificial intelligence techniques in order to better adapt it to these requirements
[4]. In order to judiciously adjust the PID factors and optimize the performance of the control system, various
nature-inspired algorithms have been proposed in recent years. Particle swarm optimization (PSO) algorithm,
simulated annealing (SA), atom search (ASO), genetic algorithm (GA), and firefly algorithm (FA). All these
approaches aim to achieve optimum accuracy in trajectory tracking [5]-[7]. Many studies have shown that
PSO hybrid controllers associated with fuzzy logic controllers encounter difficulties in various applications to
optimize the gains Kp and Ki of the classic Pl speed regulator and obtain better regulation accuracy [8].
However, the advantages of the fuzzy sliding mode control strategy based on an innovative optimization
algorithm called MOA substituted for the speed regulator prove to be more interesting in terms of performance
and robustness [9]. MOA is a bio-inspired optimization method based on the behavior of mayflies in nature. In

Journal homepage: http://ijpeds.iaescore.com


https://creativecommons.org/licenses/by-sa/4.0/

2322 O3 ISSN: 2088-8694

this algorithm, a population of virtual "flies” is used to explore the search space for optimal solutions to a
given problem [10], [11]. This MOA is distinguished by the reduction of the number of iterations, the
reduction of the risk of overfitting, and finally the avoidance of premature convergence, which results in
convergence towards a local solution rather than a desired global solution [12], [13].

Sliding mode control (SMC) is a robust control technique for stabilizing dynamic systems [14], [15].
Its fundamental principle is to create a sliding surface in the system state space [16], [17], ensuring the
motion toward a desired equilibrium. The sliding surface of SOSMC improves control accuracy and
disturbance rejection [18]-[20]. TOSMC further incorporates third-order derivatives for higher accuracy and
stability. These methods increase the complexity; however, their robust performance makes them suitable for
applications requiring high accuracy and stability [21]-[25].

The objective of this work is to compare three innovative strategies of the DSIM drive under
extreme operating conditions, in order to determine the technique that provides better energy efficiency and
reduced losses for industrial applications. The simulation results under MATLAB/Simulink clearly illustrate
the superiority of the MOA-FTOSMC technique, showing strong robustness against speed variations and a
considerable reduction of the chattering phenomenon. The analysis also indicates that this strategy achieves
the lowest harmonic distortion of the stator current (THD). Furthermore, it successfully minimizes the error
criteria (ITAE, ITSE, and ISE), confirming its effectiveness in improving dynamic responses. In addition, the
optimization process demonstrates that the MAO algorithm combined with the FTSOSMC regulator
converges rapidly toward the optimal solution with fewer iterations, reinforcing the contribution of this
approach compared to previously reported studies.

Table 1. Performance comparison for speed reversal
Approach IAE ISE ITSE
MOA-SOSMC ~ 62.90 4798 1.914e+04
MOA-TOSMC  39.713 4166 1.602e+04
MOA-FTOSMC _ 31.88 4035  1.401e+04

2. MATHEMATICAL MODEL OF DSIM
The dynamic equations of the DSIM can be reported in (d, q) axes as (1) [5], [6].

Vas1 = Rsigs1 + % — WsPgs1
Vgs1 = Reigs1 + % — WsPgs1
< Vasz = Rs1lasz + % — WsPgs2
Vgs2 = Rezigsz + % — WsPgs2
Vir = 0 = R,ig, + % + (s — W) Pqgr
Vgr = 0 = Ryigr + % + (W — W) Pgr )

For studying the dynamic behavior, the (2) of motion is added.

ao,
]T =Tem — Tr — £ )

The model of the DSIM has been completed by the expression of the electromagnetic torque Tem given as (3).

_ Lm
m = PT 1,

Te ((pdr(iqsl + iqsz) - (pqr(idsl + idsz)) (3)

3. MATHEMATICAL MODEL OF IFOC

Indirect vector control is a technique that relies on classical Pl-type regulators. However, these PI
regulators encounter difficulties in adjusting the gains due to the non-linearity and the high complexity of the
system [21]. In the application of IFOC to a DSIM, the "d" axis of the frame (dq) is aligned with the rotor
flux, with:
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(pqr =0; Par = @r (4)

The torque is (5).
Cem = PL—m [(isql + isqz)(Pr] (5)

Lm+Lr

Then we can have the reference voltages Vas;*, Vgs1™» Vasz2 ™ » Vqs2~ based on DSIM.

* : d - * - *_ ok
Visi= = Rs1lsdr + Lss delsdt — Ws (lelsql + Tr(Pngl)
) . d. o .
Vsq1= = Rsllsql + le alsql — Wg (lelsdl + (pr)

: d. e -
Vedz= = Rezisaz + Lz alsdz - Wg (Lszlsqz + Tr(prwgl)

. d. e .
V;qz = Rszlsqz + Lg, alsqz — Wg (Lgzisaz + @r) (6)
The orientation angle 6, ¢ are (7).

—1 dQdr est
0 = tan 1 —drest 7
@r_est ®qr est ( )

4. PRESENTATION OF MAYFLY OPTIMIZATION ALGORITHM TECHNIQUE

The MOA was established by Zervoudakis and Tsafarakis [10]; it presents a combination of classical
optimization methods such as PSO, GA, and the Firefly algorithm. It is able to provide a robust approach to
adjust the best gains ki and k, of a speed controller in a double-star induction machine drive system. The
appropriate combination of these three optimization strategies aims to overcome the shortcomings that may
hinder the use of a single algorithm to some extent and to enhance the capabilities of the combined algorithm to
improve its performance [12]. MOA is an efficient and innovative tool inspired by the migratory behavior of
mayflies. It is used to simulate foraging and reproduction and to refine the best solutions found by GA, focusing
on exploring the solution space and identifying promising configurations [26]. The objective function f(x)
defined beforehand determines the optimization of the algorithm in the form of a solution of f(x) represented by
an n-dimensional vector x = ( x1, X2, x3,..., xn) composed of two swarms of female and male mayflies whose
movement of each of them is represented by a speed v = ( vl, v2, v3,....., xd). The personal and community
characteristics and interactions specific to each mayfly lead it to modify its trajectory during its flight in order to
covet its best location, which is in fact that of the swarm [26]. The different steps to implement the mayfly
optimization algorithm are initialization by generating a male and female population, respectively, from the x =
(x1,...,xd) and y = (y1,..., yd), where their speed is updated by the equation v = (v1,..., vd).

5. HYBRID FUZZY THIRD ORDER SLIDING MODE CONTROL

In order to improve the robustness and stability of the DSIM-IFOC control, the speed regulator has been
replaced by an improved controller, which is a hybrid TOSMC associated with FL. We have chosen for our study
the TOSMC, which is a strategy that largely exceeds the limits of the classical SMC and is considered very
effective for uncertain systems; its capabilities are close to those of the super torsion algorithm (STA) which is a
unique high-order sliding mode control technique [17]. To improve the performance of the TOSMC method, it is
necessary to appropriately choose the parameters (a;,@,,a3) in order to judiciously exploit the Lyapunov
criterion and thus influence the dynamics of the system to obtain a response speed with a record time, rigorous
stability, and very satisfactory robustness to disturbances. The optimization method best suited to this iterative
process is illustrated by the MOA, which has the advantage of combining GA, PSO, and FA to reduce the cost
function and thus promote the best control of rise time, overshoot, and tracking [26]. The control input of the
designed TOSM controller consists of three inputs given by the (8)-(11) [25].

U(t) = Uy () + Uy (t) + Us(t) (8)
Uy (t) = aq./1Sq]- Sign(Sq) (9)
U, (t) = ay. [ Sign(Sq)dt (10)
Us(t) = ag. Sign(Sg) (11)
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The (12) shows the output of the proposed TOSMC method:

U(t) = ay.4/1Sq . Sign(Sg) + . [ Sign(Sq)dt + as. Sign(Sg) (12)

The TOSMC always remains ineffective in the face of the discontinuous term in the global control
law, which introduces a chattering phenomenon [25]. To eliminate the undesirable effects of this
phenomenon, we propose the contribution of fuzzy logic, which proves to be a strategy whose characteristics
have been proven more particularly in the field of training electrical machines. The proposed fuzzy-sliding
controller has the same control law as the TOSMC; however, the components, 3, ,8, and B; have been
adapted by a fuzzy inference table, which selects the adequate combination that converges the sliding fuzzy
controller towards the desired sliding surface when the gains are adjusted to small values.

This suggested FTOSMC method was used to improve the performance of the IFOC method by
refining the TOSM strategy using fuzzy logic and ensuring the smoothing of the hybrid controller [23], [24].
The stability condition is given by (13).

55<0 (13)
Where: S is the sliding surface or error (S = X*— X), with:
So= 5: -Qref' n (14)

B1, B2, and B3 are the positive gains.

This approach, which we will call the FTOSMC command for convenience, will be applied to the
DSIM engine in order to control its instability. Figure 1 illustrates the proposed third-order sliding mode
control (TOSMC) strategy. The command input of the designed FTOSMC controller comprises three inputs
given by (15)-(18).

U(t) = Uy (t) + Uy (t) + Us(t) (15)
Uy (t) = B1-/1Sal- Us(Sq) (16)
Uz (V) = Bo- J Up(Sp)dt 17)
Us(t) = B3 Ur(Sa) (18)

The (19) shows the output of the proposed FTOSM method:

U(t) = B1-/1Sal. Us(Sq) + B2. | Ur (So)dt + B3. Ur(Sq) (19)
Figure 2 shows a block diagram of the fuzzy third-order sliding mode control (FTOSMC) strategy.

—D[SCIrt(IS;a\ 1Sa —p[Sqrt(lSQ 1) b

Figure 1. The TOSMC strategy Figure 2. The FTOSMC strategy

To generate the fuzzy system, we defined seven fuzzy sets, which are represented by the triangular
membership functions shown in Figures 3 and 4, respectively. These sets are (NB, NM, NS, ZE, PS, PM,
PB). The choice of the triangular shape of the fuzzy membership functions used is justified by the ease of
their design and allows for better adjustment of their geometric parameters, which offers a better adaptation
of this sliding fuzzy controller to the operating conditions of the machine. It is also crucial to emphasize that
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the transition of the different fuzzy inference rules is executed more judiciously, thanks to the smooth shape
of these membership functions. The fuzzy inference table adopted uses the Mamdani model, which is defined
by the minimum, which is symbolized by “min” to calculate the degree p(AS) with respect to each rule, for
example, [W(AS) = min u(s), u(s)]. The normalized output function is represented by the following relation:

Yt u(As)As

Ur(Sp) = (20)
s ,(4s)
. [NB NM NS ZE PS PM PB i [NB NM NS ZE PS PM PB
0.8 \ / \ 0.8
- 0.6 \
u(s). u(3) A A XA ) u(as)”
0.4 \ ' \ 0.4
0.2 ) \ 0.2
0 -15 -10 —5 0 5‘ 10 15 0 -15 10 -5 0 35 1.0 15
s,8 AS

Figure 3. Membership functions for input values s,s  Figure 4. Membership functions for output value A(s)

6. IMPLEMENTATION OF MOA-FTOSMC TECHNIQUE

The different stages of the MOA are represented by the flowchart in Figure 5, where g-best is the
global optimal solution and p-best is the optimal location [26]. Table 1 presents the performance comparison
of control strategies during speed reversal. The input and output parameters with their corresponding values
of the MOA are illustrated in Table 2.

Initialization: population (x;) and velocities (v;) of mayflies

A J

[ Run the FTOSMC- IFOC control model for each set of parameters J

A 4
Calculate parameters of FTOSMC

A 4
Calculate the fitness value , finding g best

A 4

>[ Calculate and evaluate the fitness values of male mayflies, finding p_best

v

[Ran_k Male and female mayflies mate the mayflies]

\ 4
No [ Evaluate the offspring, Divide the offspring ]

Fitness function

[ Update p_best and g_best ] Oref Sq 7 Tem”
\ 4 FTOSMC |—{ IFOC/DSIM

—< Reach the max number of iteration >

WV Yes Q
| Optimum solving ? >

Figure 5. Flowchart illustrating the implementation of the MOA

Table 2. MOA parameter setting

Parameter Meaning Value Parameter Meaning Value
MaxIter Random flight coefficient 20 al/a2/a3 Max number of iterations 1/1.5/1.5
NPop Number of males 10 Beta Learning coefficient 2

NPopf Number of females 10 D Distance sight coefficient 5

g Gravitational coefficient 0.98 fl Coefficient of nuptial dance 1

gdamp Inertia damping ratio 1 Dance damp/fl damp  The damping ratio 0.8/0.99
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7.  RESULTS ANALYSIS AND DISCUSSION

To illustrate the contribution made to the performance of the IFOC control on DSIM, the MOA is
used to adjust the best proportional and integral gains of the speed regulator. These gains are reinforced by
robust techniques that allow the system to judiciously follow its reference speed. The techniques considered
in this case are, respectively, SOSMC, TOSMC, and finally FTOSMC. It is crucial to perform a simulation of
the system using Simulink under the MATLAB environment to compare the three strategies and validate the
performance and robustness of each regulator under different load and disturbance conditions. This
comparison helps determine the most appropriate technique for optimal system operation. The block diagram
of this simulation is presented in Figure 6.

i
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igs 1 ’”fl Inverter 1
.| PEt —-|<
I Tgs1 i:.vL
F [
s *
LT
in o . g 2 rh
" (@) P Inverter 2
d © _ oy1lbs2
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s 2
Defliuxing
-
"]

Figure 6. Block diagram of the (IFOC) combined with MOA-FTOSMC for the (DSIM)

Figure 7 illustrates the system’s response to two key events: a reference speed change from 300 rad/s
to 40 rad/s att = 2.5 s, and the application of a +20 N.m load torque disturbance at t = 2 s. From the zoomed-in
view of the three response curves, the reference speed tracking performance of each controller can be effectively
evaluated. The MOA-SOSMC controller exhibits a significant deviation at the moment of disturbance and a
noticeable delay in reaching the new reference speed, indicating weaker disturbance rejection and slower
dynamic response. The MOA-TOSMC controller performs better, with improved disturbance handling and
faster convergence to the new speed, though some delay is still evident. In contrast, the MOA-FTOSMC
controller demonstrates clearly superior performance, exhibiting robust disturbance rejection at t = 2 s and rapid,
accurate tracking of the reference speed at t = 2.5 s. These results confirm the MOA-FTOSMC's effectiveness in
achieving both high-speed response and strong robustness against external disturbances.

The tests conducted under speed and load variations confirm that this innovative hybrid approach
combines (MOA-FTOSMC), (MOA-TOSMC), and (MOA-SOSMC). MOA-FTOSMC is both promising and
highly effective. It consistently delivers improved and reliable performance in terms of response time, rise
time, settling time, overshoot, disturbance rejection, and steady-state error reduction.

Figure 8 clearly shows that the stator current of the MOA-FTOSMC technique exhibits less chattering
and ripple, while maintaining its sinusoidal shape more effectively. Similarly, Figure 9 illustrates the
electromagnetic torque profile under a speed variation at t = 2.5 s and the application of a 20 Nm load torque at t
= 2 s. In this scenario, the MOA-FTOSMC strategy (depicted in blue) effectively tracks the load command,
exhibiting only minor overshoots and a significant reduction in chattering compared to the other two methods:
MOA-SOSMC and MOA-TOSMC. It is also noteworthy that the MOA-TOSMC strategy (shown in green)
outperforms the MOA-SOSMC approach (in red), delivering more stable and satisfactory torque behavior.

Figure 10 depicts the variations of the rotor flux components in the q- and d-axis reference frames.
As expected, the g-axis component remains at zero, while the d-axis component closely tracks its reference
value of 1 Wh. For the MOA-FTOSMC controller, slight ripples appear during speed changes, but overall
performance is superior to the other two techniques, which show more significant deviations.

Total harmonic distortion (THD) quantifies the distortion of electrical signal waveforms relative to
their fundamental frequency components. A lower THD value reflects higher efficiency and improved system
performance. This is clearly demonstrated by the MOA-FTOSMC approach, as illustrated in Figure 11,
which shows the THD of the stator current. The MOA-FTOSMC achieves a THD of approximately 15.26%,
significantly lower than those of the other two strategies: MOA-TOSMC at 18.84% and MOA-SOSMC at
20.42%. Elevated THD values result in distorted current and voltage waveforms, causing torque and power
irregularities that can ultimately compromise system reliability. Table 3 presents the performance of the
MOA-FTOSMC controller.
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Figure 11. FFT analysis of the stator current for (a) MOA-SOSMC, (b) MOA-TOSMC, and
(c) MOA-FTOSMC

Figure 12 provides a detailed analysis of the fitness function evolution, showcasing the effectiveness
of the MOA when combined with the three studied approaches. The visualization highlights significant
differences in performance:

a) The curve represented by the black dotted line corresponds to the MOA-FTOSMC technique, identified
by the coordinates (x = 14.03, y = 0.00141). This approach achieves near-zero values on the x-axis and
converges toward an optimal solution, stabilizing by the fourth iteration. This behavior signifies the
remarkable and satisfactory performance of the training system, outperforming the other strategies.

b) In contrast, the other two approaches exhibit slower convergence and less effective optimization:

- MOA-SOSMC: Represented by the red curve, with coordinates (x = 19.11, y = 0.003667), it
demonstrates prolonged exploration of the search space without achieving desired convergence.

- MOA-TOSMC: Depicted by the blue curve, with coordinates (x = 16.24, y = 0.002747), it also
struggles to optimize efficiently, resulting in suboptimal parameter selection.

These observations underscore the superiority of the MOA-FTOSMC technique, which rapidly and

efficiently converges to the optimal solution, thereby ensuring significantly enhanced system performance

compared to the other two strategies. According to the data in Table 4.

Table 3. Performance of the MOA-FTOSMC controller

Input scaling Input scaling Output scaling Output scaling Output scaling
Factor optimized ke Factor optimized kd Factor optimized 3, Factor optimized 3, Factor optimized S5
10.220 4.376 8.4303 6.8464 6.7788
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Table 4. Performance comparison of the three control approaches
Approach MOA-SOSMC  MOA-TOSMC  MOA-FTOSMC
Robustness Average Satisfactory High
Chattering Less reduced Reduced very reduced
Dynamic Responses Unsatisfactory ~ Satisfactory high
Rising time of the speed (s) 0.5062 0.5061 0.5057
Harmonic of stator current (%) 20.42% 18.84% 15.26%
Transient performance of the speed  unsatisfactory ~ good high
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Figure 12. Evolution of the fitness function for the (MOA) combined with the three control approaches

8. CONCLUSION

Due to the inherent complexity and nonlinearity of electric drive systems, modeling and simulation
are essential for effective fault detection across various operating conditions, including speed variations,
reversals, and changing loads. In this study, we integrate advanced control strategies, fuzzy logic, sliding
mode control, and (MOA) to tackle these challenges. The fuzzy sliding mode controller enhances
performance by refining control actions based on both the error and its derivative, while the MOA efficiently
selects speed regulator gains through adaptive exploration of the search space, achieving rapid convergence
to optimal solutions with fewer iterations. Simulation results demonstrate improved system stability,
enhanced disturbance rejection, and reduced overshoot attributed to fuzzy logic. Moreover, the third-order
sliding mode control significantly diminishes the chattering effect while boosting overall robustness. This
hybrid approach presents a promising advancement for the automotive industry, contributing to greater

energy efficiency and smoother speed regulation.
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