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 A solar tracker is a combination of mechanical and electrical systems that 

can be used to move a solar panel to follow the sun's direction. This solar 

tracker system is expected to optimize the output power of photovoltaics. 

Based on existing research, many solar tracking systems have been 

developed using active tracking methods to increase the power consumption 

of the components of solar trackers. Therefore, a passive solar tracking 

system was used to reduce the solar tracker's internal energy consumption. 

In this study, a passive smart discrete solar tracker was designed with 3 

positions and 5 tracking positions based on a fuzzy-ant colony controller 

(ACO). The design of a passive solar tracker based on a fuzzy-ACO has a 

performance index (average) of 0.45 s, a settling time of 0.701 s, a 

maximum overshoot of 0.5%, and a steady-state error of 0.05%. From the 

design, the 3-position passive solar tracker with fuzzy-ACO control can 

increase efficiency with a gross energy gain of 42.79% for 10 hours 

compared to a fixed PV. The 5-position passive solar tracker using fuzzy-

ACO control increased the efficiency with a gross energy gain of 43.99%. 

Keywords: 

Efficiency 

Energy gain 

Fuzzy-ACO controller 

Smart discrete 

Solar tracker 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Imam Abadi 

Department of Engineering Physics, Faculty of Industrial Technology and System Engineering  

Sepuluh Nopember Institute of Technology (ITS) 

Building A of ITS Keputih Campus, Sukolilo, Surabaya, Indonesia 

Email: imam_abadi@its.ac.id 

 

 

1. INTRODUCTION 

Energy by automatically following the direction of incoming sunlight [1], [2]. By rotating the solar 

panel, the photon energy absorption from the Sun can be maximized. In general, solar trackers are of two 

types: active and passive [3]. Active solar trackers have a working principle based on the position of the sun 

via the light-dependent resistor (LDR) sensor found in photovoltaic (PV) systems. However, the weakness of 

the active solar tracker is that it is susceptible to scattered light, which can interfere with the LDR  

sensor readings and is influenced by cloudy weather. In addition, passive solar trackers can function under 

these conditions, where a passive system uses the movement of the sun's position. The passive tracking 

method does not involve direct measurements of the physical quantities of an object but is based on 

astronomical calculations. 

The solar trackers can be classified according to the number of rotation axes. Solar trackers based on 

the rotation axis are divided into two, namely, one-axis and two-axis [4]. A single-axis solar tracker consists of a 

single axis from one of the horizontal or vertical angles, by changing the position at the pitch angle (east and 

west) according to changes in the elevation angle of the sun. A two-axis solar tracker is a solar tracking system 

https://creativecommons.org/licenses/by-sa/4.0/
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that changes the position of the pitch and yaw angles so that it can track the sun from east to west and north to 

south, so that it can be used anywhere in the world [5], [6]. These two-axis solar trackers provide higher 

efficiency than single-axis solar trackers that use only one actuation device (e.g., motor). 

Thus, solar trackers are a solution to increase the power of solar panels. However, energy utilization 

has not been carried out optimally because currently developed technology has not been significant in 

increasing the efficiency of solar panels, and internal energy consumption has not been considered. Continuous 

solar tracking is complex and incurs significant energy costs. Therefore, a discrete solar tracker must reduce 

internal energy consumption [7]–[9]. 

This research refers to several previous studies, one of which was conducted by Smirnov et al. [10], 

by designing a solar tracker using discrete-position tracking. This study compares the efficiency of discrete 

trackers with fixed trackers and continuous solar trackers [10]. The solar tracker used in this research is a 

passive tracker; thus, supporting data is needed to model the sun's movement. Compared with a fixed 

photovoltaic (PV), the 2-position discrete solar tracker exhibits 40-50% higher efficiency. De Sá Campos 

developed a single-axis solar tracker with a discrete position system [11]. The simulation of solar radiation 

conducted by Alvarado et al., [9] which is an energy gain of 23.4% over a fixed panel, can be achieved with 

a 15° angular resolution and two discrete positions using start-stop limit switches. Adding more discrete 

positions increased the gain to 29.2% with three, 30.3% with four, and 31.9% with five. The higher angular 

resolution increases the number of algorithmic combinations and thus the energy gain [9]. Fitriyanah and 

Abadi [12] researched a two-axis passive solar tracker using a type-2 fuzzy logic controller (FLC) based on 

bacterial foraging optimization (BFO) to increase the efficiency of the PV. The results show that the type-2 

FLC exhibits better performance than the type-1 FLC. The solar tracker efficiency proposed during the trial 

period was 67.9% that of the fixed system.  

Remoaldo et al. [13] compared the performance of solar panels using conventional control methods, 

the perturb and observe (P&O) algorithm, with that of control methods using artificial intelligence FLC fuzzy 

logic can enhance the P&O algorithm by enabling faster adaptation to variable environmental conditions, 

quicker tracking of the maximum power point (MPP), and maintaining stable performance at the MPP, resulting 

in higher energy generation. From this research, it can be concluded that the use of control methods based on 

artificial intelligence can further improve system performance compared to conventional methods [14]–[17]. 

From the four studies that have been carried out, in this research, a passive smart discrete solar tracker with 

three and five positions was designed with a tracking method that is relatively cheap, easy to maintain, and has 

high work efficiency based on a fuzzy-ant colony controller (ACO) with the hope of increasing accuracy solar 

tracker tracking using MATLAB/Simulink software. 

 

 

2. METHOD 

The data required in this research encompasses both modeling and simulation of passive solar 

tracker systems. The collected data included astronomical parameters such as the altitude angle of the sun, 

which were used to determine the optimal orientation of the solar panels. Additionally, data from the direct 

current (DC) motors is gathered based on the motor specifications, including the torque, voltage, and current 

ratings, to ensure that the motor selection aligns with the system’s mechanical requirements. The solar panel 

data are based on the panel dimensions, experiments, and controllers. 

 

2.1.  Data collection and sun position modeling 

During passive tracking, astronomical calculations are performed. In this research, the sun altitude 

angle is the set point value used in the solar tracker system. The altitude angle can be determined by knowing 

the position of the sun from the data collection location. The astronomical parameters used to determine the 

altitude angle of a research location are latitude and longitude [18]. Sun position data were collected at the 

Sepuluh Nopember Institute of Technology (ITS) physics engineering, ITS Sukolilo campus, Surabaya, from 

07.00 WIB (Western Indonesian Time) until 17.00 WIB. The latitude and longitude data at the research site 

were obtained using the SunCalc org application. To ensure the accuracy of the obtained data, the coordinates 

of the SunCalc results were validated using global positioning system (GPS) measurements at the ITS 

Sukolilo campus in Surabaya. The astronomical parameters (latitude and longitude positions of the primary 

data collection research location located on the ITS Sukolilo campus with latitude and longitude positions of 

7.282953° and 112.796503°, respectively). This location is an open area where there are no trees or buildings 

that block direct sunlight from passing through the solar panels. The following modeling of the sun position 

is performed mathematically in (1)-(8) [19]. 

 

𝜃𝑧 = 𝑐𝑜𝑠−1(𝑠𝑖𝑛 𝛿 𝑠𝑖𝑛 ϕ + 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝜔 𝑐𝑜𝑠 ϕ) (1) 

 

𝛼 = 90 − 𝜃𝑧 (2) 
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𝛾 = 𝑐𝑜𝑠−1 (
𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝜔 𝑠𝑖𝑛 𝜑

𝑠𝑖𝑛 𝜃𝑧
−

𝑠𝑖𝑛 𝛿 𝑐𝑜𝑠 𝜑

𝑠𝑖𝑛 𝜃𝑧
) (3) 

 

The declination angle can be calculated using (4). 

 

𝛿 = 23,45 sin [360 
(284+𝑛)

365
] (4) 

 

If the parameters on the tracking surface are the incidence angle ( ), pitch angle (𝛽), and yaw angle ( ), 

they can be calculated using (5). 

 

𝜃𝑖  = 𝑐𝑜𝑠−1(𝑐𝑜𝑠 𝜃𝑧 cos 𝛽 +  𝑠𝑖𝑛 𝜃𝑧 sin 𝛽 cos(𝛾𝑠 − 𝛾) (5) 

 

𝛾𝑠  =  𝜎𝑒𝑤  𝜎𝑛𝑠 𝛾𝑠𝑜 +  (
1− 𝜎𝑒𝑤 𝜎𝑛𝑠

2
) 𝜎𝑤  180° (6) 

 

𝛽 =  𝜃𝑧 (7) 

 

𝛾 =  𝛾𝑠 (8) 

 

Where n: days in a year (1 year = 365 days), β: surface slope, γ: surface azimuth, γs: solar azimuth, θz: zenith 

angle, δ: declination, ω: clock angle, and ϕ: latitude. 

 

2.2.  Data collection and DC motor modeling 

The sun-tracking system on solar panels uses an actuator in the form of a DC motor, which is used 

as the pitch-angle driver of the solar panels. A DC motor is used to move the solar panel from east to west 

and vice versa (pitch angle) [5]. The DC motor used in this system is a DC motor with a voltage of 12 V. 

Data collection on DC motors determines the parameters to be used in the modeling of solar trackers in 

Simulink. The parameters used for modeling include the voltage constant (Ke), torque constant (Kt), motor 

inertia (Jm), motor resistance (R), motor inductance (L), and viscous friction coefficient (Bm). Data were 

collected by providing inputs in the form of voltages ranging from 2 to 12 V. Then, the DC motor rpm value 

was obtained from each voltage, which was then used to find the value of the DC motor parameters, as 

shown in Table 1. 

 

 

Table 1. DC Motor Parameters 
Parameters DC motor 

Resistance (R) Ohm 2.055 

Inductance (L) Henry 0.005833 

voltage constant (Ke) Vol.sec./rad 28.52839 

Torque constant (Kt) Nm/A 28.52839 

Moment of inertia (J) Nms2 45.66596 

Coefficient of friction (B) Nms/rad 0.678999 

 

 

The modeling of DC motors uses the basic laws of physics, which consist of electrical and 

mechanical DC motor models, which are derived using Kirchhoff's Law II on rotation [20]. 

 
(𝑠) = 𝑅𝑎. 𝐼𝑎(𝑠) + 𝐿𝑎. 𝐼𝑎(𝑠)𝑆 + 𝐾𝑏. 𝜔(𝑠) (9) 

 

𝑉𝑎(𝑠) − 𝐾𝑏. 𝜔(𝑠) = 𝐼𝑎(𝑠)(𝑅𝑎 + 𝐿𝑎  𝑆) (10) 

 

𝐼𝑎 =
𝑉𝑎(𝑠)−𝐾𝑏.𝜔(𝑠)

(𝑅𝑎+𝐿𝑎𝑆)
 (11) 

 

𝐼𝑎 = 𝑉𝑎(𝑠) − 𝐾𝑏. 𝜔(𝑠)
1

(𝑅𝑎+𝐿𝑎𝑆)
 (12) 

 

𝐾𝑡 . 𝐼𝑎(𝑠) = 𝐼𝑚 . 𝜔(𝑠)𝑆 − 𝐵𝑚. 𝜔(𝑠) (13) 
 

𝜔(𝑠) =
𝐾𝑡.𝐼𝑎

𝐽𝑚.𝑠+𝐵𝑚
 (14) 
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𝜔(𝑠) = 𝐾𝑡 . 𝐼𝑎
1

𝐽𝑚.𝑠+𝐵𝑚
 (15) 

 

2.3.  Data retrieval and solar panel modeling 

The input data used in solar panel modeling in MATLAB/Simulink include solar radiation and 

temperature. Radiation and temperature values were obtained from direct field measurements. Furthermore, 

several parameters obtained from the PV module datasheet were used in the solar panel modeling as shown 

in Table 2. 
 
 

Table 2. Solar panel parameters 
Parameter-parameter Parameter value 

Temperature Coefficient of short circuit voltage (Φ) -0.0036 V/oC 

Temperature Coefficient of short circuit current (μ) 0.00053 A/oC 

Pmax (maximum power) 250 W 
PV internal resistance (Rpv) 0.15603 Ohm 

Imp (maximum power current) 8.34 A 

Vmp (maximum power voltage) 30 V 

Voc (open circuit voltage) 36.8 V 

Isc ++ (short circuit current) 9 A 

 
 

Based on Kirchhoff's Current Law, current can be calculated with the equation [21]. 
 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑠ℎ (16) 
 

Ideally, Ish = 0 because Rsh ≈ ∞, so (11) can be rewritten as (17). 
 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑑 = 𝐼𝑝ℎ − 𝐼𝑜 [𝑒𝑥𝑝 (
𝑉+𝐼𝑅𝑝𝑣

𝑉𝑇
) − 1] (17) 

 

I and V can be represented as functions of radiation and temperature as (18)-(21). 
 

𝐼 = [𝜇 (
𝑆

𝑆𝑟𝑒𝑓
) (𝑇 − 𝑇𝑟𝑒𝑓) + (

𝑆

𝑆𝑟𝑒𝑓
− 1) 𝐼𝑠𝑐] + 𝐼𝑚𝑝 (18) 

 

𝑉 = −ϕ(𝑇 − 𝑇𝑟𝑒𝑓) − 𝑅𝑝𝑣(𝐼 − 𝐼𝑚𝑝) + 𝑉𝑚𝑝 (19) 
 

ϕ𝑟𝑒𝑓 =
2𝑉𝑚𝑝−𝑉𝑜𝑐

𝐼𝑠𝑐
𝐼𝑠𝑐−𝐼𝑚𝑝

+𝑙𝑛(1−
𝐼𝑚𝑝

𝐼𝑠𝑐
)
 (20) 

 

R𝑝𝑣 =
ϕ𝑟𝑒𝑓𝑙𝑛(1−

𝐼𝑚𝑝

𝐼𝑠𝑐
)+𝑉𝑜𝑐−𝑉𝑚𝑝

𝐼𝑚𝑝
 (21) 

 

I and V can be represented as functions of radiation and temperature as shown in (18) and (19). The 

values of S_ref = 1000 W/m2, T_ref = 25 ℃, and Rpv can be found in (21), and the values of the other 

parameters can be seen in the solar panel specification data given in Table 2. Based on the calculated values 

from the equivalent circuit equation and the solar panel parameter values obtained from the solar panel 

specifications/datasheets, modeling was carried out in Simulink MATLAB. 

 

2.4.  Design of a fuzzy ant-colony control system 

The control system developed in this research is the fuzzy-ACO control system, which is used as a 

control system for passive solar trackers. The controlled variable is the pitch angle. There are several 

components in the system, and the block diagram of the passive solar tracker control system can be explained 

in Figure 1. The input from the passive solar tracker consists of 2 pieces, namely error and error differences, 

which are defined in (22) and (23) [5]: 
 

e(k) = αs −θs (22) 
 

𝛥𝑒(𝑘) = 𝑒(𝑘)−𝑒(𝑘−1) (23) 
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where 𝑒(𝑘) is the current error and 𝑒(𝑘−1) is the previous error. The output is a pulse width modulation 

(PWM) signal whose value varies from -255 to 255. This signal was used to regulate the reference voltage of 

the DC motor as an actuator in the modeling of the passive smart solar tracker. 
 

 

 
 

Figure 1. Block diagram of the solar tracker system 
 

 

2.5.  Fuzzy membership function 

In this process, membership functions and the number of fuzzy numbers are formed. The input 

membership function is a triangle. There are 5 membership functions: negative big (NB), negative small 

(NS), zero (ZE), positive small (PS), and positive big (PB) [22]. 

The control modeling on the solar tracker aims to improve the performance of the solar tracker so 

that the motor has high speed and accuracy, and there is no oscillation when it reaches a set point. Therefore, 

the solar tracker can have higher performance if it uses the FLC-ACO control system rather than using FLC 

control without optimization, or compared to solar panels in a fixed state [23]–[25]. The membership 

function in Figure 2 is optimized using ACO. After optimization, the input membership function with the 

optimized parameters is obtained as shown in Figure 3. 
 
 

  
 

Figure 2. Membership function of fuzzy error and 

delta error 

 

Figure 3. FLC-ACO membership function error and 

delta error 
 
 

3. RESULTS AND DISCUSSION 

Testing was conducted on solar trackers with 3-positions and 5-positions, and their performance was 

compared with that of a fixed PV system. The parameters analyzed include the rise time, steady-state time, 

maximum overshoot, and steady-state error. The performance test aims to determine the improvement in PV 

panel performance with a solar tracker, which is done by measuring the voltage, current, and output power of 

the PV panel. The energy efficiency increase resulting from the passive solar tracker system was also calculated. 
 

3.1.  Setpoint test results on passive solar tracker 

The performance measurement criteria for control observed in the setpoint test were the rise time, 

settling time, maximum overshoot, and steady-state error. The setpoint test on the passive solar tracker is 

conducted by providing an input value in the form of a step value representing the altitude angle. The 

setpoint test on the passive discrete solar tracker is represented by 30°, 45°, and 60°. Figure 4 shows the 

results of the motor pitch-angle output response to the input altitude angle. 

Figure 4 shows the fuzzy-ACO response to three elevation angle set points: (a) 30°, (b) 45°, and  

(c) 60°. The blue curve represents the fuzzy control, whereas the red curve represents the fuzzy-ACO control. 

The control response using fuzzy-ACO can reach the set point based on the three graphs, and the resulting 
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error is smaller than that of the fuzzy controller before optimization. The performance indexes of the fuzzy 

and fuzzy-ACO control responses are presented in Table 3. 

Table 3 shows that the error produced by fuzzy-ACO was smaller than that of the fuzzy control 

(around 0.1%, with a difference of around 0.03% compared to fuzzy. In the fuzzy control response, there is 

an overshoot of 1.5%, while in the fuzzy-ACO response, the maximum overshoot value is 0.5%, which 

means that in the fuzzy-ACO control, there are fewer oscillations that prevent it from reaching the set point. 

Thus, from the overall response produced, it can be concluded that the fuzzy-ACO control has a faster 

response in reaching the set point with a smaller error value than the fuzzy control. 

 

 

(a) 

 

(b) 

 

(c) 

 
 

Figure 4. Set point test on the solar tracker: (a) 30°, (b) 45°, and (c) 60° 
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Table 3. Performance index nn passive solar tracker pitch angle 

Performance index 
Set point 30  ̊ Set point 45  ̊ Set point 60  ̊

Fuzzy F-ACO Fuzzy F-ACO Fuzzy F-ACO 

Rise time (second) 0.464 0.453 0.465 0.474 0.461 0.500 
% error steady state 0.1 0.07 0.07 0.04 0.07 0.03 

%Maximum overshoot 1.5 0.5 1.5 0.5 1.5 0.5 

Settling time (s) 0.647 0.635 0.642 0.664 0.719 0.805 

 

 

3.2.  Setpoint tracking test 

The tracking test on the sun-tracking system determines the response of the system to a changing set 

point. Altitude-angle tracking testing by providing an initial input with a PV pitch-angle position of 0°. In the 

tracking test, the input was given in the form of variations in the altitude-angle set points. The results of the 

altitude-angle tracking test are shown in Figure 5. 

At the beginning of the set-point tracking test, the pitch angle was given a set-point value of 30° and 

then increased to 45° and 60°. Figure 5 shows that the results of the pitch-angle tracking response for the 

fuzzy-ACO control system can follow changes in the sun's altitude angle well. From the results of the altitude 

angle tracking test on the passive solar tracker, we conclude that the fuzzy-ACO controller can be applied 

and produces a good response; thus, it can be applied to this system. 
 

 

 
 

Figure 5. Tracking test response set point altitude angle 
 

 

3.3.  Determining the movement time of the 3-position solar tracker 

In accordance with the tracking concept of the discrete solar tracker, the angles that determine the 

movement of the solar tracker are determined by astronomical calculations from the data collection location. 

To determine when the sun tracking system changes position, the operating time is divided into 3, namely 

07.00–10.00 WIB, 11.00–13.00 WIB, and 14.00–17.00 WIB. After optimizing using ACO on fuzzy 

boundaries, 3 angles with the highest optimum radiation and power output were identified based on the  

3-time sections were determined to determine the position of the solar tracker. The results of optimization in 

the form of the 3 most optimal angles are the altitude-angle set points for the movement of the passive solar 

tracker into 3 positions. The 3 optimum positions were set at 10.00, 12.00, and 14.00, precisely at angles of 

52.12°, 58.87°, and 42.74°. The solar tracker moving at 10.00 will then be referred to as position 1, the solar 

tracker moving at 12.00 will then be referred to as position 2, and the solar tracker moving at 14.00 will then 

be referred to as position 3. The solar tracker moves at and around this position. 
 

3.4.  Determining the movement time of the 5-position solar tracker 

The 5-position discrete solar tracker system was determined by dividing the tracker operating time 

from 07.00-17.00 WIB into 5-time sections: 07.00–08.00, 09.00–10.00, 11.00–12.00, 13.00–14.00, and 15.00 

– 17.00 WIB. Similarly, with the 3-position discrete solar tracker, after optimization using ACO on fuzzy 

boundaries, 5 angles with the most optimum radiation and power output can be identified based on the 5-time 

sections that have been determined to determine the position of the solar tracker. The results of optimization 

in the form of the 5 most optimal angles are the altitude angle set points for the movement of the passive 
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solar tracker into 5 positions. The 5 optimum positions are at 08.00 WIB, 10.00 WIB, 12.00 WIB, 13.00 

WIB, and 15.00 WIB, precisely at angles of 29.96°, 52.12°, 58.87°, 52.79°, and 30.77°, respectively. The  

5-position discrete solar tracker that moves at 08:00 a.m. will be referred to as position 1, the solar tracker 

that moves at 10.00 will be referred to as position 2, the solar tracker that moves at 12.00 will be referred to 

as position 3, the solar tracker that moves at 13.00 will be referred to as position 4, and the solar tracker 

moving at 15.00 will then be referred to as position 5. 

 

3.5.  Performance test of 3-position passive solar tracker with fuzzy control 

The output from the 3-position passive solar tracker has a maximum voltage (solar noon) of 29.91 V 

and a maximum current of 8.35 A. The maximum voltage occurred at t = 301 min at the time of solar noon 

and an altitude position of 66.71°. The average current storage on a fixed PV is 3.89 A, while on a solar 

tracker it is 5.53 A. 

Figure 6 shows that the solar tracker's output power curve is greater than that of the fixed PV. The 

maximum power produced by the solar tracker was 249.7759 watts at t = 300 min, and the PV fixed was 209.04 

watts. The energy produced by the fixed PV was 1052.84 Wh, and the amount of energy produced by the 

passive solar tracker was 1459.56 Wh. Therefore, the efficiency increase of the gross energy gain is 38.63%. 

 

 

 

 

Figure 6. Output power response of 3-position solar tracker and fixed PV 

 

 

3.6.  Performance test of 3-position passive solar tracker with fuzzy-ACO control 

The output from the passive solar tracker has a maximum voltage (solar noon) of 29.92 V and a 

maximum current of 8.41 A. The maximum voltage occurred at t = 301 min at the time of solar noon and an 

altitude position of 66.71°. The average current storage on a fixed PV is 3.89 A, whereas that on a solar 

tracker is 5.57 A. 

The maximum power produced by the solar tracker was 251.54 watts = 301 minutes, and the fixed PV 

was 209.04 watts, as shown in Figure 7. The energy efficiency of the fixed PV and solar tracker can be 

calculated from the output power. The energy produced by the fixed PV was 1052.84 Wh, and the energy 

produced by the passive solar tracker was 1503.42 Wh. Therefore, the gross energy gain efficiency is 42.79%. 

 

3.7.  Performance test of 5-position passive solar tracker with fuzzy control 

The output from the passive solar tracker has a maximum voltage (solar noon) of 29.91 V and a 

maximum current of 8.37 A. The maximum voltage occurred at t = 301 min at the time of solar noon and an 

altitude position of 66.71°. The average current storage on a fixed PV is 3.89 A, whereas that on a solar 

tracker is 5.61 A. 

Figure 8 shows that the maximum power produced by the solar tracker was 250.3 W at t = 300 min, 

and the fixed PV was 209.04 watts. The energy efficiency of the fixed PV and solar tracker can be calculated 

from the output power. The amount of energy produced by the fixed PV was 1052.84 Wh, and the amount of 

energy produced by the passive solar tracker was 1469.27 Wh. Therefore, the efficiency increase of the gross 

energy gain efficiency is 39.55%. 
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3.8.  Performance test of 5-position passive solar tracker with fuzzy-ACO control 

The output from the passive solar tracker has a maximum voltage (solar noon) of 29.92 V and a 

maximum current of 8.42 A. The maximum voltage occurred at t = 301 min at the time of solar noon and an 

altitude position of 66.71°. The average current storage on a fixed PV was 3.89 A, whereas that on a solar 

tracker was 5.56 A.  

Figure 9 shows the output of the solar tracker 5 position using F-ACO and PV fixed. The maximum 

power produced by the solar tracker was 251.54 W at t = 300 min, and the fixed PV was 209.04 watts. The 

energy efficiency of the fixed PV and solar tracker can be calculated from the output power. Therefore, the 

efficiency increase of the gross energy gain is 43.99%. 

 

3.9.  Passive smart discrete solar tracker performance test 

A 3 and 5-position passive solar tracker performance test using fuzzy-ACO control was conducted 

to determine the PV performance between the fixed PV and the designed solar tracker. The output variables 

from the solar tracker are the output voltage and PV output current, which are then compared with the fixed 

PV. From the performance test simulation, it can be seen that the gross energy gain efficiency of the solar 

tracker for fixed PVs increased. Table 4 presents the increase in the energy performance of the 3-position and 

5-position passive discrete solar trackers. 
 

 

 
 

Figure 7. Power response output of solar tracker 3 position F-ACO and PV fixed 

 

 

 
 

Figure 8. Output power response of 5 position solar tracker and fixed PV 
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Figure 9. Power response output of solar tracker 5 position F-ACO and PV fixed 

 

 

Based on Table 4, the 3-position solar tracker with fuzzy control experienced an increase in the 

gross energy gain efficiency of 38.63% compared to the fixed PV. Meanwhile, if you use F-ACO control, the 

performance of the solar tracker experiences a greater increase, namely 42.79%. The 5-position solar tracker 

with fuzzy control experienced an increase in the gross energy gain efficiency of 39.55% compared to a PV 

in a fixed state. In addition, if you use F-ACO control, the solar tracker performance increases by 43.99%. 

From this analysis, it can be seen that when using the fuzzy method and F-ACO, the resulting solar 

tracker performance is more optimal than that of fixed PV. The solar tracker performance obtained using the 

3 and 5-position discrete solar trackers was better with F-ACO than with just fuzzy tracking. This proves that 

optimization by the ACO algorithm can improve the controller performance. 

The fuzzy-ACO algorithm excels because it can automate the parameter tuning process effectively 

by integrating the ant colony optimization algorithm. Thus, it does not depend on manual tuning. This 

approach produces a fast, accurate, and adaptive control response to nonlinear conditions. The advantage of 

fuzzy-ACO over ANFIS-based methods is that it has high adaptability to variable conditions without 

requiring large computational complexity [23], [26]. Research has been conducted on dusty environmental 

conditions, i.e., the construction of a PV cleaning robot to improve PV performance [27]. The reliability of 

DC motors needs to be tested to determine the maintenance intervals and wear of motor components during 

long-term operation in solar farm installations. 
 

 

Table 4. Performance improvement of a solar tracker for fixed PV 
Type Fuzzy (%) F-ACO (%) 

Solar tracker 3 positions 38.63 42.79 

Solar tracker 5 positions 39.55 43.99 

 

 

4. CONCLUSION 

Several parameters of each component in the fuzzy-ACO-based passive solar tracker system were 

obtained in the form of secondary and experimental data. These parameters include astronomical parameters 

(longitude and latitude position), DC motor parameters, namely voltage constant (Ke), torque constant (Kt), 

resistance (R), inductance (L), viscous friction coefficient (Bm), motor inertia (Jm), and motor torque (Tm). 

The photovoltaic parameters are Ish (shunt current), Rpv (PV equivalent resistance), Rsh (shunt resistance), 

and Io (saturation current). The design of a passive solar tracker based on fuzzy-ACO has a performance 

index (average) with a rise time of 0.45 s, a settling time of 0.701 s, a maximum overshoot of 0.5%, and a 

steady-state error of 0,05%. From the performance index produced by the passive solar tracker with 

fuzzy-ACO control, it can be concluded that fuzzy-ACO control has a faster response in reaching the set 

point with a smaller error value than using fuzzy control. Compared with a fixed PV, increasing the power 

efficiency using fuzzy-ACO on a 3-position passive solar tracker can increase the gross energy gain 

efficiency by 42.79% over 10 hours compared with a fixed PV. In addition, if FLC control is used, the gross 

energy gain efficiency will be 38.63% higher than that of the fixed PV. The 5-position passive solar tracker 
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using fuzzy-ACO can increase the gross energy gain efficiency by 43.99%. In addition, if FLC control is 

used, the gross energy gain efficiency is 39.55% compared to that of the fixed PV. 
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