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 The virtual-flux direct power control (VFDPC) technique is a sensorless 

control approach aimed at improving the performance of grid-connected power 

converters. The approach involves simulating the grid voltage and AC-side 

inductors similar to an AC motor drive system, a principle deriving from direct 

torque control (DTC). The basic idea of VFDPC is to indirectly estimate the 

voltage at the converter's input through the concept of virtual flux, enabling the 

real-time calculation of instantaneous active and reactive power without 

necessitating direct voltage measurements. An essential element of the VFDPC 

approach is the implementation of a lookup table, used as a decision-making 

tool that identifies the most suitable voltage vector (a particular output state of 

the converter) in accordance with real-time power conditions. This provides 

instantaneous and smooth control of power flow, leading to enhanced 

operational stability. This approach allows for continual optimization of the 

converter's output, enabling VFDPC to significantly decrease total harmonic 

distortion (THD) while preserving reliable steady-state and dynamic 

performance. Experimental validation demonstrates that incorporating real-

time feedback into virtual flux estimates improves the precision of voltage 

prediction and the responsiveness of the power control system. Consequently, 

VFDPC exhibits enhanced adaptability for various grid and load situations, 

presenting an appropriate choice for current power systems that demand 

efficient, reliable, and sensorless operation. 
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1. INTRODUCTION 

The increasing integration of renewable energy sources and the advancement of smart grid 

infrastructure have raised the demand for power conversion systems that are both high-performing and 

energy-efficient, as well as flexible in response to fluctuating grid conditions [1], [2]. Grid-connected 

converters are essential in these systems, allowing bidirectional energy transfer, maintaining power quality, 

and assuring grid compatibility. To address these complex requirements, advanced control techniques have 

been developed, ensuring accurate management of power distribution and improved dynamic responsiveness. 

direct power control (DPC) techniques, derived from direct torque control (DTC) principles, gained 

significant attention due to their immediate response and less need for several sensors [3], [4]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Virtual flux direct power control (VFDPC) indicates an important improvement within the direct 

power control (DPC) framework. It functions by directly estimating grid voltage using virtual flux 

computation, hence allowing the real-time calculation of active and reactive power without employing 

voltage sensors [5], [6]. This not only reduces the development of hardware but also enhances system 

reliability. The integration of a voltage vector selection lookup table allows VFDPC to operate with low total 

harmonic distortion (THD) while providing a rapid and steady response during dynamic operating situations, 

such as abrupt load changes and grid disturbances [7]–[9]. 

Despite the advancements in the VFDPC control system, a significant issue continues to exist: the 

absence of robust real-time validation processes for virtual flux estimation. The accuracy and responsiveness 

of flux prediction are crucial for the effective operation of VFDPC, particularly in environments where the 

grid exhibits unpredictable behavior and load requirements fluctuate [10], [11]. Inadequate validation may 

lead to errors in power calculations, reduce stability, and degrade control performance, particularly during 

sudden occurrences. This study addresses the gap by looking into practical real-time validation methods for 

virtual flux in direct power control systems. The suggested method makes VFDPC more stable and flexible 

in less-than-ideal settings by constantly checking flux estimation against changing grid parameters [12]–[14]. 

The approach intends to make it easier to quickly change control actions in real time, which will lower THD 

and improve the overall accuracy of control. 

This main contribution is the development and evaluation of a real-time validation framework for 

VFDPC, specifically designed for high-performance grid-connected converters. The suggested solution is 

evaluated under various dynamic scenarios, such as voltage sags and sudden load changes, in order to 

determine its ability to maintain system stability and performance. This study enhances the existing 

knowledge by illustrating how real-time flux validation can markedly improve control precision, 

dependability, and robustness in contemporary power systems [15]–[17]. Moreover, it enables the potential 

implementation of sensorless control methodologies in next-generation grid systems [18], [19].  
 
 

2. METHOD  

This study examines the real-time validation of the virtual flux idea in direct power control (DPC), 

prioritizing the improvement of dynamic performance despite variable grid settings [20]–[22]. The suggested 

methodology encompasses numerous essential elements designed to address the issues associated with virtual 

flux estimation, real-time control, and dynamic system behavior. Figure 1 depicts the three-phase grid-

connected converter topology employed in this paper, which provides the fundamental structure for the 

implementation of the VFDPC approach. The illustration depicts the interface between the grid and the 

converter via inductive-resistive branches (La, Lb, Lc), and (Ra, Rb, Rc) together with the switching network 

that generates the necessary converter voltage vectors (Vconv,a), (Vconv,b), and (Vconv,c). This hardware 

arrangement facilitates the real-time implementation of virtual flux estimation and control logic, as examined 

in the following sections. 

This paper is organized into four sections, starting with an introduction: i) Section 1 provides a detailed 

review of the existing research, offering an overview of DPC and the latest developments in VFDPC; ii) Section 

2 covers the methodology, explaining key concepts behind VFDPC, such as how grid voltage and power are 

estimated, and introduces a newly developed switching lookup table; iii) Section 3 presents the results and 

analysis, focusing on system performance under balanced voltage conditions, its impact on total harmonic 

distortion (THD), and comparisons with traditional control methods; and iv) Section 4 concludes with a 

summary of the main findings, practical implications, and recommendations for future studies. 
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Figure 1. Three-phase grid-connected converter topology 
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2.1.  Problem formulation  

The VFDPC approach works by estimating two key things: the instantaneous active and reactive 

power inputs, and the virtual flux of the three-phase grid [23], [24]. Essentially, VFDPC combines a method 

for directly controlling power with a technique for estimating input voltage sources to manage an AC-DC 

converter efficiently. In VFDPC, accurately estimating the grid's virtual flux and choosing the right switching 

states for the converter are both essential for smooth operation. To improve accuracy, a low-pass filter is 

added to the system, which helps correct any phase or magnitude errors that may occur during virtual flux 

estimation. By carefully managing these power inputs, VFDPC can regulate both the line currents and the 

output voltage of the DC link. As shown in Figure 2, the control structure of VFDPC treats the utility grid’s 

source voltage as though it were a virtual AC machine. This approach allows for precise and responsive 

power control in the converter system. 
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Figure 2. VFDPC control diagram 
 

 

The (1) expresses the relationship between parameters that have been controlled in the rectifier by 

Pulse Width Modulation (PWM). From the equations, the grid voltage from the three-phase system is equal 

to the summation voltage from the internal resistance, inductance, and converter pole voltage. Following this, 

in (2)-(4) determines the phase voltage at the pole’s converter. This parameter value is cooperating with the 

DC-link output voltage and the converter’s switching states from each phase. 
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′ + 𝑆𝑏
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Next, as in direct power control strategy, the voltage must be converted from abc-coordinates into 

alpha and beta coordinates, or known as the stationary reference frame. Matrix formulation has been 

implemented to do this transformation, as shown in (5).  
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Grid virtual flux can be obtained by integrating the vector of grid voltage, as shown in (6), and the final 

equations can be seen in (7).  

 

𝜓
𝑔,𝛼𝛽

= ∫ (𝐸𝑔,𝛼𝛽(𝑑𝑡))  (6) 

 

= ∫ (𝑉𝑐𝑜𝑛𝑣,𝛼𝛽 + 𝑅𝐼𝑔,𝛼𝛽 +
𝐿𝐼𝑔,𝛼𝛽

𝑑𝑡
) 𝑑𝑡  (7) 

 

Practically, the value of resistance can be neglected due to its small value compared to the value of line 

inductance. Therefore, the final equations without considering the value of resistance can be seen as shown in 

(8) and (9) for real and imaginary axes.  

 

𝜓𝑔,𝛼 = ∫ 𝑉𝑐𝑜𝑛𝑣,𝛼𝑑𝑡 + 𝐿𝐼𝑔,𝛼 = 𝜓𝑐𝑜𝑛𝑣,𝛼 + 𝐿𝐼𝑔,𝛼 (8) 

 

𝜓𝑔,𝛽 = ∫ 𝑉𝑐𝑜𝑛𝑣,𝛽𝑑𝑡 + 𝐿𝐼𝑔,𝛽 = 𝜓𝑐𝑜𝑛𝑣,𝛽 + 𝐿𝐼𝑔,𝛽 (9) 

 

In (10) and (11) are added to the estimation method to compensate for these errors. These equations 

are intended to take into account how the LPF behaves differently at different frequencies. This makes it 

possible to accurately reconstruct the flux at all frequencies except the fundamental grid frequency, which is 

kept constant. Then, the rectified flux components are recalculated using important factors such as the grid 

angular frequency, the filter cut-off frequency, and the characteristics of the converter's switching. 

Figure 3 shows that this modification approach is built into the flux estimation loop. The picture 

shows the whole virtual flux estimate block, which uses transfer functions that represent the LPF behavior to 

process the converter voltage inputs. To get the virtual flux components right, more compensation terms are 

used. This better estimation method makes the system more resistant to measurement errors and keeps 

control consistency in real-world situations. 
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(
𝜔𝑐

𝜔𝑒
)  (11) 

 
 

 
 

Figure 3. The diagram of a low-pass filter in virtual flux for the filtering process 
 

 

2.2.  Lookup table 

The (12) and (13) provide the estimates for input active power and reactive power in a stationary 

reference frame.  

 

𝑃 = (
3

2
) 𝜔(𝜓𝑔,𝛼𝐼𝑔,𝛽 − 𝜓𝑔,𝛽𝐼𝑔,𝛼)  (12) 

 

𝑄 = (
3

2
) 𝜔(𝜓𝑔,𝛼𝐼𝑔,𝛼 + 𝜓𝑔,𝛽𝐼𝑔,𝛽) (13) 
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As a result, the differentiation of active and reactive power can be expressed as (14) and (15), respectively. 
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The effectiveness of the voltage vector selection mechanism in VFDPC was determined by 

analyzing the system's behavior through simulations of instantaneous active and reactive power responses to 

designated converter voltage vectors. The results arise from the mathematical equations of power derivatives 

regarding voltage vector orientation. Figures 4 and 5 exhibit the derivatives of active and reactive power, 

respectively, in response to various converter voltage vectors. These waveforms illustrate how various 

vectors affect the rate of power change, consequently enhancing the decision-making process in choosing the 

ideal voltage vector to minimize power error. 
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Figure 4. Active power derivative 
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Figure 5. Reactive power derivative 

 

 

The decision logic is integrated into a lookup table, illustrated in Table 1, which correlates the 

instantaneous power error states (dP, dQ) and the sector position with the appropriate voltage vector. The 

table classifies the 12 potential voltage vector sectors and designates control actions according to whether the 

active and reactive power errors are rising (1) or decreasing (0). For example, when both dP and dQ are 

minimal, the database promotes voltage vectors that maintain the current power level; conversely, when both 

errors are significant, the lookup table prioritizes vectors that rapidly rectify the differences. 
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Figures 4, 5, and Table 1 collectively present an in-depth explanation of the power error-based 

vector selection technique that supports the VFDPC algorithm. This integrated control logic facilitates 

precise and adaptive voltage vector application, ensuring perfect control of active and reactive power while 

improving the system's responsiveness to dynamic conditions. 

 

 

Table 1. VFDPC lookup table 
Power error status Sector position (θn) and converter voltage vector (Vn) 

dP dQ θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12 
0 0 V1 V1 V2 V2 V3 V3 V4 V4 V5 V5 V6 V6 

0 1 V2 V2 V3 V3 V4 V4 V5 V5 V6 V6 V1 V1 

1 0 V6 V6 V1 V1 V2 V2 V3 V3 V4 V4 V5 V5 
1 1 V4 V4 V5 V5 V6 V6 V1 V1 V2 V2 V3 V3 

 

 

3. RESULTS AND DISCUSSION  

Figure 6 presents the simulation results of the VFDPC control strategy. The results demonstrate that 

the voltage vector selection in the look-up table is appropriate, ensuring smooth input voltage and current, as 

shown in Figures 6(a) and 6(b). Additionally, this control strategy effectively converts the AC source to a DC 

output, following the reference value, as observed in Figure 6(c). Figure 6(d) illustrates the instantaneous 

active and reactive power, while Figure 6(e) confirms unity power factor operation, where phase voltages 

align with their corresponding currents. Finally, the total harmonic distortion (THD) measured in 6(f) is 

significantly reduced, meeting IEEE standard requirements. 
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Figure 6. Simulation results from VFDPC control strategy: (a) phase voltage, (b) line current,  

(c) DC-link voltage, (d) active and reactive powers, (e) unity power factor, and (f) harmonic spectrum 

 

 

3.1.  Experimental validation for VFDPC control strategy 

The development of the control algorithm is performed using MATLAB/Simulink and real-time 

implementation with the dSPACE DS1104 Digital Signal Processing (DSP) board inserted in a desktop 

computer [25]. The experimental prototype of the AC-DC converter system has been developed in the 

Universiti Teknikal Malaysia Melaka (UTeM) laboratory to study and examine the proposed DPC scheme. 

The main hardware configuration for the experimental setup is shown in the block diagram of Figure 7. The 

setup consists of a three-phase grid supply, a three-phase transformer, line inductors, an AC-DC converter 

power circuit, gate drivers and isolation, DC-link capacitors, a variable resistive load, voltage, and current 

sensors, and a DSP controller board. The sampling time, Ts, for real implementation has been increased to 

66.667 µs or 15 kHz sampling frequency because of the speed limit of the DSP board. A large capacitance of 

 80

60

40

20

0

-40

-60

Eg,a Eg,b Eg,c

-80

-20

P
h

a
s
e
 V

o
lt

a
g

e
 [

V
]

0.8 0.81 0.82 0.83 0.84 0.85

Time [s]

 
Ig,a Ig,b Ig,b

2

1.5

1

0.5

0

-1

-1.5

-2

-0.5

0.8 0.81 0.82 0.83 0.84 0.85

Time [s]

P
h

a
se

 C
u

rr
e
n
t 

[A
]

 
160

150

140

130

110

100

120

D
C

-L
in

k
 V

o
lt

a
g

e
 [

V
]

2 2.1 2.2 2.3 2.8 3

Time [s]

2.4 2.5 2.6 2.7 2.9

 
180
160

120
100

60

-20

80

A
c
ti

v
e
  
P

o
w

e
r 

[W
a
tt

] 

R
e
a
c
ti

v
e
 P

o
w

e
r 

[V
a
r]

140

40
20
0

0.8 0.81 0.82 0.83 0.84 0.85

Time [s]

 
80

60

40

20

20

0

40

60

80
0.8 0.81 0.82 0.83 0.84 0.85

Time [s]

V
o
lt

a
g
e
 [

V
]

2

1.5

1

0.5

-0.5

0

1

1.5
2

C
u

rr
e
n

t 
[A

]

Va

Ia



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Experimental validation of virtual flux concept in … (Muhammad Hafeez Mohamed Hariri) 

2515 

the DC-link capacitor at the output of the AC-DC converter acts as a short circuit across the three-phase 

supply if no proper start-up method is implemented during the initial operation of the front-end PWM 

rectifier system. A high current will flow continually through the capacitor until the capacitor builds up 

sufficient voltage. This condition will result in a large starting current which can disturb the supply AC 

voltage, blow the line fuses, or damage the switching devices such as IGBTs and bridge diodes. Therefore, a 

systematic approach to starting up the AC-DC converter system unit is necessary. In the proposed control 

method, the following way of charging up the unit is established. The capacitor is pre-charged to a certain 

DC voltage value Vdc, through the anti-parallel diode of the IGBT switches. 

 

 

 
 

Figure 7. dSPACE DS1104 digital signal processing (DSP) 

 

 

Figure 8 represents the balanced input three-phase grid side voltage waveforms once the VFDPC 

has been activated. In Figure 8(a), the balanced voltage waveforms of the three-phase grid are shown. Figure 

8(b) then illustrates the VFDPC in action, using the new switching table to generate nearly sinusoidal line 

currents operating at a unity power factor, as illustrated in Figure 8(c). The reactive power reference Qref is 

set to 0 Var to obtain unity power factor operation so that the phase voltages are in phase with their 

associated currents. The most upper waveform in Figure 8(d) shows the DC output voltage, Vdc is well 

regulated at a reference voltage, Vdc, ref of 150 V, while maintaining the sinusoidal three-phase current. 

Owing to precise virtual flux estimation, both active and reactive power are accurately calculated, as depicted 

in Figure 8(e). Finally, the AC-DC converter utilizing VFDPC with a new switching table generates a current 

total harmonic distortion (THD) of 4.5% as shown in 8(f). This THD value complies with the IEEE standard, 

which requires THD to remain below 5%.  
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Figure 8. Simulation results from VFDPC control strategy: (a) phase voltage, (b) line current,  

(c) DC-link voltage, (d) active and reactive powers, (e) unity power factor, and (f) harmonic spectrum 
 

 

3.2.  Load variation 

Experiment tests are also conducted to verify the dynamic performance of the VFDPC. Figure 9 

shows transient responses for the rapid change of load power under unity power factor operation. The 

additional resistor is abruptly connected in parallel with the existing resistor at the output of the PWM 

rectifier to cause a sudden increase in the load power. As a result, the estimated input active power, P, and the 

phase currents increase simultaneously to fulfill the load power demand. The proposed control method can 

maintain the DC-link output voltage at the reference value of 150 V and the sinusoidal line currents with a 

unity power factor. The estimated reactive power, Q, is kept at 0 Var to maintain the unity power factor 

operation of the PWM rectifier.   
    
 

 
 

Figure 9. Transient response for load increasing in VFDPC from experimental results under balanced voltage 

supply conditions. From top: DC-link output voltage (107 V/div), estimated input active power (150 W/div), 

estimated input reactive power (75 Var/div), and phase a-current (2.5 A/div) 

 

 

Evaluation of the dynamic response under the change of load power from high to low power 

demand is performed by instantly disconnecting the additional resistors in parallel with the existing load 

resistor of 140 Ω. Figure 10 shows the transient response during this condition. The input estimated active 

power, P, and the phase current are decreasing concurrently to meet the decreasing load demand. The DC 
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output voltage level is kept almost constant at its reference value of 150 V while maintaining the sinusoidal 

line currents flowing through the AC-DC converter system.   

 

 

 
 

Figure 10. Transient response for load power decreasing in VFDPC from experimental results under balanced 

voltage supply conditions. From top: DC-link output voltage (107 V/div), estimated input active power  

(75 W/div), estimated input reactive power (75 Var/div), and phase a-current (2.5 A/div) 

 

 

3.2.  DC Voltage reference variation 

The dynamic behavior of the front-end rectifier under a step change in output voltage reference is 

shown in Figure 11. In the figure, the DC output voltage increases according to a change of the DC voltage 

reference from 150 V to 235 V. The estimated active power, P, is also increased and decreased steadily to 

new values during the changes of output voltage while maintaining the estimated reactive power, Q at 0 Var. 

The proposed control method can generate almost sinusoidal phase currents with low THD and unity power 

factor before and after the changes of the DC output voltage reference.    

 

 

 
 

Figure 11. Dynamic response during a change in DC voltage reference in the proposed DPC from 

experimental results under balanced voltage supply conditions. From top: DC-link output voltage  

(107 V/div), estimated input active power (75 W/div), estimated input reactive power (75 Var/div),  

and phase a-current (2.5 A/div) 

 

 

4. CONCLUSION  

This study has shown that the virtual-flux direct power control (VFDPC) method provides a reliable, 

sensorless technique for controlling grid-connected converters via precise virtual flux estimation. By 

imitating the dynamic characteristics of AC machines, VFDPC facilitates accurate real-time calculations of 

active and reactive power, hence enhancing stable and efficient power flow management. The 

implementation of a voltage vector selection lookup table showed improvements in dynamic response and 
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system stability, especially during transient impacts. Experimental results validated the method's efficacy in 

substantially decreasing total harmonic distortion (THD) while preserving excellent steady-state performance 

results that correspond with theoretical predictions and prior research findings. This study enhances current 

research by including real-time validation procedures, thus filling a significant gap in ensuring the 

dependability and adaptability of virtual-flux-based control. In contrast to conventional DPC approaches, this 

paper provides an optimized hardware design while maintaining control accuracy, facilitating wider 

implementation in advanced, renewable-dominant grid settings. The study not only confirms existing ideas 

on sensorless control and flux estimates but also extends the field by presenting a demonstrated, scalable 

approach for improved power converter performance under complex and dynamic operating configurations. 
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