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 In this study, a new chattering-free global second-order sliding mode load 

frequency controller (CGSOSMLFC) is proposed for multi-region linked 

power systems (MRLPS). Key achievements of this paper include: i) a new 

CGSOSMLFC is investigated utilizing only output variables; ii) a global 

steadiness of the MRLPS is ensured by eliminating the hitting phase in 

traditional sliding mode control (TSMC), and the undesirable high-

frequency vacillation marvel in the control signal is efficiently lessened by 

utilizing the second-order sliding mode control technique. Firstly, a novel 

estimator is constructed to conjecture the immeasurable state variables of the 

MRLPS. Then, an estimator-based CGSOSMLFC is synthesized to force the 

states of the controlled plant into the anticipated switching surface at an 

instance time and attenuate the chattering phenomenon in the control 

indication. Additionally, the total MRLPS’s stability analysis is executed by 

applying the Lyapunov function theory and linear matrix inequality (LMI), 

confirming the practicability and reliability of the method. Lastly, simulation 

outcomes on a three-zone linked power system are furnished to authenticate 

the usefulness and advantages of the proposed technique. 
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NOMENCLATURE 

 

PS : Power system  𝐴𝑇

  

 : Transpose of A  matrix 

MRLPS : Multi-region linked power system 𝑦(𝑡) : Output signal 

WTG : Wind power generation  𝜎[𝑧̂(𝑡)] : Single phase switching surface 

LFC : Load frequency control  𝜓[𝑧̂(𝑡)] : Sliding manifold function 

VSC : Variable structure control  𝜉(𝑧, 𝑡) : Disturbance input signal 

TSMC : Traditional sliding mode control  ‖𝑧(𝑡)‖ : Norm of state vector 𝑧(𝑡) 

GSMC : Global sliding mode control  𝜆𝑚𝑎𝑥  : Maximum eigenvalue 

HOSMC : High-order sliding mode control  𝑢(𝑡) : Control signal 

SOSMC : Second-order sliding mode control 𝜛(𝑡) : Dynamics error of estimator 

( )z t  : States of the plant 𝛼, 𝜀, 𝜑̄ : Positive constants 

 

 

https://creativecommons.org/licenses/by-sa/4.0/
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1. INTRODUCTION 

The operation of PS is extremely complex due to the variability of load requests and renewable 

generation, and especially the exchange of electricity between neighboring areas. The PS control schemes are 

used to maintain the system in a stable state, and LFC is an important control issue in wide-area PS 

operations [1]-[3]. Among control approaches, sliding mode control (SMC) is one such well-known control 

performance due to sturdiness, finite time convergence, insensitivity to perturbations, and uncertainties [4], 

[5]. The renowned SMC is a specific category of VSC, which is the newest ongoing movement in many 

different fields, such as hydraulic/air-filled, transmission of data, structures of satellites, robotic manipulator, 

and especially in the LFC of PSs [6]-[10]. Although the VSC in sliding mode has noteworthy 

accomplishments in LFC problems, overall, there are still two missions that should be unraveled for VSC-

based LFC problems of PSs: This includes: i) Output feedback: A shortcoming of the current investigations is 

that all variables of the PSs have to be accessible. This is unacceptable in various practical plant controls. A 

new output feedback sliding mode load frequency controller (OFSMCLFC) is proposed for MRLPS 

employing only output information; and ii) Chattering phenomenon eradication: A new OFSMCLFC not 

only promises the entire steadiness of the MRLPS but also reduces the undesirable high-frequency 

oscillations in control indication by utilizing the SOSMC. To find the solution to the output feedback control 

strategy problem in the first task above, a significant number of studies have been proposed in LFC, as 

mentioned in Table 1. 
 
 

Table 1. Summary of key works related to the first task of notable SMC-based LFC methods 
Ref. Systems Key contributions Approaches/techniques Limitations 

[6] Microgrid system Improved frequency 
regulation using optimized 

SMC 

Sliding mode control law via 
teaching learning optimization 

Traditional SMC, the 
chattering issue remains 

[7] Multi-region power plant 
with time delays and 

perturbations 

Robust frequency regulation 
handling delays and 

perturbations 

Full-order terminal sliding mode 
controller 

Traditional SMC, 
robustness only in the 

sliding phase 

[11] Multi-area interconnected 
energy plants  

Addressed load frequency 
adjustment using terminal 

SMC 

Integral and derivative terminal 
sliding mode control 

Requires full state 
measurement 

[12] Interconnected multi-field 
power plants 

Decentralized SMC with 
optimized parameters 

Decentralized sliding mode LFC 
optimized via modified PSO 

Full state accessibility 
assumed 

[13] Interconnected power systems  Improved estimator-based 

SMC 

Integral SMC based on state 

estimator 

Chattering issue remains 

 

 

Nevertheless, authors in Table 1 have used the TSMC technique, which only produces the wanted 

motion after sliding mode has occurred. The TSMC’s robustness only happens in the sliding mode period. To 

advance the robustness of SMC, the authors in this study proposed a novel GSMC approach. It should be 

distinguished that GSMC has strong stability during the whole control progression, better than the TSMC 

[14], [15]. Recently, the design of the LFC scheme was suggested based on adaptive GSMC for a multi-

region linked electricity system with immeasurable states [8]. However, most of these studies need the 

accessibility of the states of the plant, which cannot be warranted in practice. Preview study [16], output 

feedback sliding mode load frequency control law was proposed for MRLPS with external perturbations. 

Nevertheless, these studies could not lessen the chattering impact in the input signal. High-frequency 

vibration causes damage or wear to moving mechanical parts, affects control accuracy, and causes high heat 

in the electrical circuit [17]. To deal with this chattering phenomenon, the technique of hiding the 

discontinuity of the control signal in its higher derivatives was executed employing HOSMC or SOSMC. The 

HOSMC technique was elevated by Levant [18], then eventually it has eventually attracted a lot of attention. 

In addition, the theory and application of the SOSMC approach have been greatly developed in recent years. 

The idea of the SOSMC methodology was originally established in the 1980s by [19]. This is also the second 

mission of our study. To achieve chattering reduction in the second task, there are many methods to mitigate 

the chattering phenomenon, as shown in Table 2. 
 
 

Table 2. Summary of the main findings and associated limitations regarding in the second mission 
Ref. Systems Key contributions Approaches/techniques Limitations 

[20] Multi-region hydro 
power plants 

Addressed chattering in LFC 
using adaptive HOSMC 

Adaptive integral controller using 
HOSMC 

Sensitivity to unmodeled 
dynamics, needs full state 

[21] Three-region power 

plant 

Adaptive SMC design for 

improved LFC 
Adaptive the HOSMC technique Sensitivity to fast dynamics 

[22] Large-scale power 

plant  
Robust LFC with SOSMC  Using the SOSMC approach Full state measurability required 
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As shown in Tables 1 and 2, although significant progress has been made in designing advanced 

SMC-based LFC schemes, two major challenges remain. First, many existing methods require full state 

information, which is not always practically possible. Second, while various approaches have attempted to 

mitigate the chattering phenomenon, fully eliminating high-frequency oscillations in the control signal 

remains difficult. Motivated by these limitations, this paper proposes a novel chattering-free global second-

order sliding mode load frequency controller (CGSOSMLFC) that employs an observer-based output 

feedback strategy to address both of these issues effectively. The CGSOSMLFC ensures global stability of 

the MRLPS from the beginning of its motion while eliminating high-frequency fluctuations in the control 

signal. In addition, in the sliding mode, an appropriate requirement to asymptotically alleviate the MRLPS is 

given by means of the renowned LMI method. To end, by mathematical example, the validity of the proposed 

concepts, techniques, and procedures is shown. 
 

 

2. STATE SPACE FORM OF THE MULTI-REGION LINKED POWER SYSTEMS 

In this part, the MRLPS contains subsystem control regions that are linked through tie-lines [7]. 

Figure 1 illustrates the mathematical model of i the control zone with WTG, where i = 1,2. . . , n symbolizes 

the number of zones, and i ≠ j. The multi-zone electricity plant dynamics are described in Table 3. 
 

 

 
 

Figure 1. Block diagram of the MRLPS comprises wind and thermal units 
 

 

Table 3. The interconnected multi-area power system dynamics [7] 
Expression/formula Physical meaning/explanation 

ż1i(t) = −
1

TPi

ż1i(t) +
KPi

TPi

z2i(t) +
KPi

TPi

ΔPdi(t) −
KPi

2πTPi

 

               × ∑ Ksij[Δz5i(t) − Δz5j(t) +
KPi

TPi

z6i(t)]

N

i=1,j≠i

 

Frequency dynamics: z1i(t) = Δfi(t) is frequency deviation in area i 

ż2i(t) = −
1

TTi

z2i(t) +
1

TTi

z3i(t) 
Generator output dynamics: z2i(t) = ΔPgi(t) is deviation of generator 

output power 

ż3i(t) = −
1

TGiRi

z1i(t) −
1

TGi

z3i(t) −
1

TGi

z4i(t) −
1

TGi

ui 
Governor valve position dynamics: z3i(t) = ΔXgi(t) is governor’s 

valve situation 

ż4i(t) = KEiKBiαTz4i(t) +
KEiαT

2π
∑ [Δz5i(t) − Δz5j(t)]

N

i=1,j≠i

 
Integral controller output dynamics: z4i(t) = ΔEi is output of integral 

controller 

ż5i(t) = 2πz5i(t) Rotor angle dynamics: z5i(t) =  Δδi(t) is the rotor angle’s aberration 

ż6i(t) =
αω

Tωi

z4i(t) −
1

Tωi

z6i(t) 
Wind turbine power dynamics: 

z6i(t) = ΔPωi(t) is the wind turbine’s power 

 

 

The terms TPi, TTi, and Tωi are the time coefficients of the power plant, the turbine, the wind turbine, 

respectively; TGi indicates the governor’s time constant, Ri indicates droop gain’s time constant, KPi indicates 

power system gain’s time constant, KBiindicates bias factor’s time constant, KEiindicates time constant of the 

integral controller gain. Ksij is the tie-line factor between the region i and j (i ≠ j).   and αT show the 

contribution coefficients of wind turbines and thermal units. Table 4 shows the interconnected electricity 

plant dynamics considering parameters of uncertainties. 
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Table 4. State-space model of the MRLPS [7] 
Expression/formula Explanation/purpose 

żi(t) = Aizi(t) + ∑ Gij

N

j=1,j≠i

zj(t) + Biui(t) + ξ
i
(zi, t), yi = Cizi(t) 

State-space model of the i th part in MRLPS with 

disturbance ξ
i
(zi, t). 

zi(t) = [Δfi(t) ΔPgi(t) ΔXgi(t) ΔEi Δδi(t) ΔPωi(t)]
T Definition of the state vector zi(t). 

ξ
i
(zi, t) = ΔAi(zi, t)zi(t) + Biυi(zi, t) + HiΔPLi

(t) with ‖ξ
i
(zi, t)‖ ≤ Dξi

 Structure of disturbance ξ
i
(zi, t). 

 

 

Here, zi(t) and zj(t) are state vectors and neighboring state vectors, respectively; ui(t) is the control 

signal; yi(t) is the controlled output; and Dξi
 is positive constant. Biυi(zi, t) and ΔAi(zi, t) are the perturbation 

input signal and the uncertainty parameters, respectively. The plant matrices Ai, Bi, Gij can be presented as: 
 

 

Ai =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−
1

TPi

−
KPi

TPi

0 0
KPi

2πTPi

∑Ksij

N

i=1
j≠1

KPi

Tωi

0 −
1

TTi

1

TTi

0 0 0

−
1

TGiRi

0 −
1

TGi

−
1

TGi

0 0

KEiKBi 0 0 0
KEi

2π
∑Ksij

N

i=1
j≠1

0

2π 0 0 0 0 0

0 0 0
αω

Tωi

0 −
1

Tωi]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, Bi =

[
 
 
 
 
 
 
  0
  0  
1

TGi

  0  
  0  
  0 ]

 
 
 
 
 
 

, Gij =

[
 
 
 
 
 
 
 0 0 0 0

KEi

2πTTi

Ksij 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 −
KEi

2πTTi

Ksij 0

0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 
 
 

. 

 

 

3. MAIN RESULTS 

3.1.  Sliding mode without reaching phase automatic load frequency control design 

To establish an innovative chatter-free SOSMC law for the MRLPS, a novel state estimator is 

constructed to find the unmeasurable states of the MRLPS, as described in Table 5. In Table 5, ẑi(t) is the 

estimate of zi(t), ŷi(t) is the estimate of yi(t), and Ξi is the estimator gain matrix. Now, to generate a novel 

weakened-chattering single-phase SOSMC law for the MRLPS, a single-phase sliding manifold function is 

defined and specified in Table 6. 

In Table 6, κi is any diagonal matrix, and αi1  and αi2 are the positive constants. Fi, Li are the 

designed matrices. Fi is selected to ensure that is (FiBi) invertible. The design matrix Li is preferred to fulfill 

the inequality of the power plant: Re[ λiiimax
 To get the stability of the multi-field linked electricity plant 

depicted in Table 4 upon the specified sliding manifold in Table 6 from the zero-attainment moment, a new 

CGSOSMLFC is suggested as (1). Where αi1, αi2, φ̄i
 are some positive scalars. 

 

u̇i(t) = −(αi1FiBi)
−1{αi1‖FiBiLi‖‖ż̂i(t)‖ + ∑ αj1‖FjGji‖

N
j=1,j≠i ‖ż̂i(t)‖ + αi2‖FiΞi‖[‖ẏi(t)‖ − ‖ẏ̂i(t)‖] 

+κi‖σ̇i[ẑi(t)]‖ + φ̄i‖ψi‖ − εi
2‖Fi‖‖ẑi(0)‖e−εit}sign(ψi(t)) (1) 

 

 

Table 5. The suggested state estimator for the MRLPS 
Expression/formula Explanation/purpose 

ż̂i(t) = Aiẑi(t) + ∑ Gij

N

j=1,j≠i

ẑj(t) + Biui(t) + Ξi[yi(t) − ŷi(t)], ŷi(t) = Ciẑi(t) 

Observer equation estimating the 

unmeasured states. 

ϖi(t) = zi(t) − ẑi(t) Estimation error ϖi(t). 

ϖ̇i(t) = [Ai − ΞiCi]ϖi(t) + ∑ Gij

N

j=1,j≠i

ϖj(t) + ξ
i
(ẑi, t) 

Dynamics of the estimation error. 

 

 

- Theorem 1. Consider the MRLPS subject to exogenous disturbances as described in Table 4. Upon the 

implementation of the control act specified in (1), the state trajectories of the MRLPS are driven toward 

the switching manifold ψi[ẑi(t)] = 0 immediately from the initial moment of activation. Consequently, 

the asymptotic stability of the system, as represented by Table 4, is ensured. 
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- Proof of Theorem 1. Cogitate the applicant Lyapunov functional as V[ẑi(t)] = ∑ ‖ψ
i
[ẑi(t)]‖

N
i=1 , where 

direct differentiation of V[ẑi(t)] results. 

 

V̇(t) ≤ ∑ {αi1‖FiBiLi‖‖ż̂i(t)‖ + ∑ αj2‖FjGji‖
N
j=1,j≠i ‖ż̂i(t)‖

N
i=1 +

ψi
T

‖ψi‖
αi1FiBiu̇i(t) +

αi1‖FiΞi‖[‖ẏi(t)‖ − ‖ẏ̂i(t)‖] − εi
2‖Fi‖‖ẑi(0)‖e−εit + κ‖σ̇i[ẑi(t)]‖}. (2) 

 

Now, by substituting the output feedback control signal (1) into (2), we can appreciate that 

V̇[ẑi(t)] ≤ −∑ φ̄
i
‖ψ

i
[ẑi(t)]‖

N
i=1 < 0, φ̄

i
> 0. Consequently, the MRLPS’s state variables come in contact 

with the switching manifold in Table 6 from the zero-attainment moment for all t ≥ 0. 

 

 

Table 6. The new single-phase sliding manifold for supporting output feedback controller design 
Expression/formula Explanation/purpose 

ψ
i
[ẑi(t)] = σ̇i[ẑi(t)] + κiσi[ẑi(t)] Single-phase sliding function 

σi[ẑi(t)] = αi1Fiẑi(t) − αi2Fi ∫ (Ai − BiLi)ẑi

t

0

(τ)dτ − Fiẑi(0)e−εit 
Definition of σi[ẑi(t)] 

σ̇i = αi1FiBiLiẑi + ∑ αi1FiGij

N

j=1,j≠i

ẑj + αi1FiBiui + αi1FiΞiCiϖi + εiFiẑi(0)e−εit 
First derivative of σi[ẑi(t)] 

σ̈i[ẑi(t)] = αi1FiBiLiż̂i + ∑ αi1FiGij

N

j=1,j≠i

ż̂j + αi1FiBiu̇i + αi1FiΞi[ẏi(t) − ẏ̂i(t)] 

                 − εi
2Fiẑi(0)e−εit 

Second derivative of σi[ẑi(t)], 
required for SOSMC technique 

ψ̇
i
[ẑi(t)] = αi1FiBiLi ż̂i(t) + ∑ αi1FiGij

N

j=1,j≠i

ż̂j + αi1FiBiu̇i + αi1FiΞiCiϖ̇i 

                  − εi
2Fiẑi(0)e−εit + κσ̇i[ẑi(t)] 

Time derivative of the sliding 

manifold ψ
i
[ẑi(t)] 

 

 

3.2.  Stability analysis of whole system in sliding mode dynamics 

In this section, a appropriate requirement expressed in the form of LMI is formulated to ensure the 

asymptotic stability of the MRLPS, under sliding mode control. To this end, we proceed by analyzing the 

following LMI formulation. 

 

[
 
 
 
 
 
 
 
 Λ̃i  + ∑ [μ

j
(Gji − ΓjGji)

T
(Gji − ΓjGji) + μ

j
−1RjRj]    RiΦ                   Rj   RjΨj  0

N
j=1
j≠i

       Φi
TRi     Θ̃i + ∑ [μ̆

j
Gji

TΓj
TΓjGji + μ̆

j
−1RjRj + μ̃

j
Gji

TGji + μ̃
j
−1SjSj]    0      0     Sj

N
j=1
j≠i

         Rj                                                                         0                      − η̆
j
−1   0     0

      Ψj
TRj                                                                       0                         0   − η̃

j
−1  0

         Sj                                                                          0                          0       0  − η̃
j
−1

]
 
 
 
 
 
 
 
 

< 0, (3) 

 

Where Λ̃i = Ri(Ai − ΓiBiLi) + (Ai − ΓiBiLi)
TRi, Θ̃i = Si(Ai − ΞiCi) + (Ai − ΞiCi)

TSi, Ri, Si are any 

positive matrices, and μ
i
> 0, μ̆

i
> 0, μ̃

i
> 0, η̆

i
> 0, η̃

i
> 0. Then, we can build the following theorem: 

- Theorem 2. Supposing that the sufficient condition expressed in the LMI formulation (3) admits a feasible 

solution Ri > 0, Si > 0, and the switching manifold is demarcated as in Table 6. Then, the MRLPS 

subjected to exogenous perturbations, as described by Table 4, is asymptotically stable when the system 

trajectories evolve on the sliding manifold ψ
i
[ẑi(t)] = 0. 

- Proof of Theorem 2. Based on the defined switching manifold ψ
i
[ẑi(t)] = ψ̇

i
[ẑi(t)] = 0, the equivalent 

control law can be derived and expressed as (4). 

 

ui
eq

(t) = −(αi1FiBi)
−1{αi1FiBiLiẑi + ∑ αi2FiGij

N
j=1,j≠i ẑj + αi1FiΞi[yi(t) − ŷi(t)] + εiFiẑi(0)e−εit} (4) 

 

Now, we substitute the value of ui
eq

(t) into the first equation of the MRIPS’s state space model in 

Table 4 and simplify as (5). 

 

żi(t) = [Ai − ΓiBiLi]zi + Φiϖi + [∑ Gij
N
j=1,j≠i − ∑ ΓiGij

N
j=1,j≠i ]zj + ∑ ΓiGij

N
j=1,j≠i ϖj + ξ

i
+ Ψie

−εit (5) 
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Where Φi = αi1Bi(αi1FiBi)
−1FiBiLi − αi1Bi(αi1FiBi)

−1FiΞiCi, Γi = αi1Bi(αi1FiBi)
−1Fi and Ψi = −εiBi  

× (αi1FiBi)
−1Fiẑi(0). Now, to confirm the steadiness of the MRLPS dynamic, we deliberate the Lyapunov 

positive definition function V[zi(t), ϖj(t)] = ∑ [
zj(t)

ϖj(t)
]

T

[
Ri    0
0    Si

] [
zj(t)

ϖj(t)
]N

i=1 , where Ri > 0 and Si > 0 satisfy 

the LMI (3) for i = 1, 2, . . . , L. Then, taking the derivative of time, combining (5) and the dynamics of the 

estimation error in Table 5, and by means of Lemma 3 of work [23] and Lemma of study [24], we have 

 

V̇[zi(t), ϖj(t)] ≤ 

[
zi

ϖi
]
T

∑

[
 
 
 Λ̃i  + ∑ [μ

j
(Gji − ΓjGji)

T
(Gji − ΓjGji) + μ

j
−1RjRj] + η̆

j
RjRj + η̃

j
RjΨjΨj

TRj   
N
j=1
j≠i

RiΦ

         Φi
TRi          Θ̃i + ∑ [μ̆

j
Gji

TΓj
TΓjGji + μ̆

j
−1RjRj + μ̃

j
Gji

TGji + μ̃
j
−1SjSj]

N
j=1
j≠i

+ η
j
SjSj

]
 
 
 

N
i=1 ×

[zi(t)  ϖi(t)]
T + ∑ [γ̃

i
θi
2 + λi(t)]

N
i=1  (6) 

 

Where  Λ̃i = Ri(Ai − ΓiBiLi) + (Ai − ΓiBiLi)
TRi, Θ̃i = Si(Ai − ΞiCi) + (Ai − ΞiCi)

TSi, γ̃i
= η

j
−1 + η̆

j
−1, 

θi(t) = ‖ξ
j
(zi, t)‖, and λi(t) = η̃

j
−1(e−εit)Te−εit. Then, employing well-known LMI approach [25] to 

inequality (3), we attain 

 

Ξ̆i = −[
Λ̃i  + ∑ [μ

j
(Gji − ΓjGji)

T
(Gji − ΓjGji) + μ

j
−1RjRj] + η̆

j
RjRj + η̃

j
RjΨjΨj

TRj  
N
j=1,j≠i RiΦ

         Φi
TRi         Θ̃i + ∑ [μ̆

j
Gji

TΓj
TΓjGji + μ̆

j
−1RjRj + μ̃

j
Gji

TGji + μ̃
j
−1SjSj]

N
j=1,j≠i + η

j
SjSj

] > 0 (7) 

 

Based on (6) and (7), it can be seen that V ≤  ∑ [−λmin 
N
i=1
̇ (Ξi)||ẑi(t)||

2 + γ
i
θi

2 + λi(t)], when the term λi(t) 

will tend to zero in the infinity time. We can be represented as V̇ ≤ ∑ [−λ(Ξ̆i)‖ẑi(t)‖
2̃
ii

2

min
[]]

N∑
i=1  where the 

constant value γ̃
i
θi(t) = γ̃

i
‖ξ

j
(zi, t)‖ and the eigenvalue λmin (Ξi)> 0. Hence, V̇ < 0 is derived with ||ẑi(t)|| >

√γiθi
2 ∕ λmin(Ξi) which shows that the MRLPS is asymptotically stable. 

 

 

4. SIMULATION RESULTS 

In this section, the parameters of a three-region linked electricity plant with WTGs, which are 

itemized in [7], is simulated by MATLAB software to validate the feasible solution of the suggested LFC 

approach. The external disturbances of the three regions are respectively supposed as ξ
1

= 0.04, ξ
2

= 0.022, 

ξ
1

= 0.06. The obtained results of these electricity plants are exemplified in Figure 2. 

- Remark 

The performance of the proposed CGSOSMLFC (1) in the MRLPS integrated with WTGs is shown 

in Figure 2. In Figure 2(a), the frequency deviations Δf₁, Δf₂, and Δf₃ respond rapidly immediately after the 

initial disturbance. Although slight oscillations occur within the first 0 - 2 seconds, all frequency curves of 

three areas converge to a stable value in 3,5 seconds, with under shoot are −1,2 × 10−3 (pu MW) and −1.7 × 

10−3 (pu MW). Figure 2(b) shows the control signals for the three areas. It is remarkable that the proposed 

method exhibits no chattering and does not require access to the state variables of the MRLPS, which is a 

clear advantage over recent studies [6]-[8]. This verifies that the suggested CGSOSMLFC (1) successfully 

dismisses undesirable high-frequency switching. Figure 2(c) plots the switching surfaces of the three areas 

rapidly converging to zero without oscillations from the initial instant of system motion. It can be stated that 

the enhanced robustness and the anticipated dynamic response of the MRLPS are conquered by sacking the 

reaching phase in the TSMC approach, that has condensed the restrictions required in other studies [13], [16], 

[21], [22]. Figure 2(d) demonstrates that the area control errors decline quickly and approach zero within 

approximately 3 seconds, reflecting precise frequency and power regulation. Overall, the simulation results 

prove that the CGSOSMLFC (1) not only provides high-performance frequency regulation with fast 

response, global system stability, and small steady-state error, but also completely eliminates chattering. 

From above obtained achievements, the anticipated method does not necessarily the accessibility of 

the state variables. We can conclude that the proposed method not only efficiently solves the stabilization 

problem but also reduces the chattering for the MRLPS integrated with WTGs. Subsequently, this technique 

is highly appreciated and more realistic, since it can be easily instigated in practical systems. 
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Figure 2. Time history of (a) the frequency aberrations, (b) the load frequency controllers, 

(c) the single-phase sliding surfaces, and (d) the area control error of three-area power plants with WTGs 
 
 

5. CONCLUSION 

In this paper, a new chattering-free global second order sliding mode load frequency controller 

(CGSOSMLFC) has been developed for multi-region linked power systems (MRLPS) subjected to external 

perturbations. To resolve the unmeasurable state variables problem, a novel observer has been projected for 

guessing the unmeasurable state variables. A newly formulated one-phase switching manifold function has 

been systematically formulated for SMC such that all states trajectories of the system begin at the surface at 

an initial time moment which makes it highly robust for applications. The novel CGSOSMLFC is 

systematically designed to suppress high-frequency chattering phenomena and to robustly stabilize the 

MRLPS under the influence of external perturbations. Furthermore, the steadiness of the MRLPS is promised 

via the LMI method which is extracted based on Lyapunov steadiness theory. Ultimately, the experimental 

replications are applied to a three-area interconnected power network to validate the enhanced usefulness of 

the planned controller in suppressing chattering and outperforming existing sliding mode control 

methodologies. In future work, we will examine the robustness of the proposed approach with complex 

power systems, including various renewable energy sources and energy storage systems. 
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