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ABSTRACT

This article proposes a novel single-stage double-sided LCC (DS-LCC) constant
power (CP) wireless battery charger. The proposed CP charger uses a closed-
loop control in the secondary side with the active rectifier to make the DS-LCC
charger achieve CP charging and optimal efficiency. Compared to previous
work, the proposed CP wireless power transfer system does not involve any
switch-controlled capacitor (SCC), does not require wireless communication,
and can achieve optimal efficiency throughout the charging process. The pro-
posed charger reduces cost and system complexity while improving efficiency.
The proposed wireless charger is validated by simulation, and the efficiency re-
mains between 94.44% and 94.52%, surpassing the previous work.
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1. INTRODUCTION
Conventional constant current (CC) charging is a primary method in battery charging technology [1],

[2]. Despite its widespread use, this approach has a significant limitation. The power delivered is comparatively
low at the initial phase of CC charging because of the battery’s initial low voltage, as depicted in Figure 1(a).
This charging method fails to optimize the power potential of the charger or power source, resulting in a lower
overall charging rate.

The constant power (CP) charging technique was developed to enhance charging efficiency [3]. The
output power is maintained at its maximum level to fully leverage the power capacity of the charger or source, as
illustrated in Figure 1(b). This method accelerates the charging process and reduce charging time. Furthermore,
CP charging helps alleviate battery degradation concerns [4], [5].

The wireless charging technology has been widely adopted by various fields, like biomedical implants
[6]-[8], electric transportations [4], [5], [9]-[11], and consumer electronics [12]-[14]. Inductive power transfer
(IPT) wireless chargers have gained significant attention due to their hands-free operation, low maintenance,
high reliability, and safety. A common method for achieving CP charging in the wireless charger involves
adding extra DC-DC converters [15], [16]. However, the additional stage increases system complexity, cost,
and losses. Various single-stage wireless charging solutions have been proposed to eliminate the extra DC-DC
stage. Among them, single-stage CP wireless chargers based on the series-series (S-S) compensation topology
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have been introduced [17]-[19]. Nevertheless, these S-S wireless chargers experience excessive current issues
during misalignment, requiring additional safety mechanisms for protection.

The LCC compensation topology, like LCC-S and double-sided LCC (DS-LCC), effectively mitigates
this issue. An LCC-S CP charger using pulse density modulation (PDM) is proposed in [5]. However, this
type of charger does not support bidirectional operation, making it unsuitable for the evolving demands of the
internet of energy. DS-LCC compensation topology can operate bidirectionally and provide several key ben-
efits, including high efficiency upper limit, load-independent constant current output, and enhanced flexibility
in parameter design [1], [20]-[22]. Recognized by industry standards [23], this topology is widely adopted in
wireless power transfer (WPT) systems.

However, the conventional single-stage DS-LCC wireless charger is limited to CC charging. To enable
CP charging, authors in [21] proposes the DS-LCC wireless charger with two additional switch-controlled
capacitors (SCCs). While this modification achieves CP output, it also introduces higher costs and power
losses. Additionally, this CP charger does not consistently achieve optimal efficiency throughout the charging
process. This article presents a novel single-stage DS-LCC CP wireless charger that eliminates the need for
SCCs, thereby reducing system costs. Moreover, it consistently achieves load impedance matching to maintain
optimal efficiency.
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Figure 1. Charging profile of (a) CC charging and (b) CP charging

2. METHODOLOGY
2.1. System structure

The structure of the proposed CP wireless charger is depicted in Figure 2. An inverter with four
MOSFETs (S1-S4) generates an AC voltage source to supply power to the resonant circuit. L1, C1, Cp, Lp,
and Rp correspond to the series inductor, parallel capacitor, series-compensated capacitor, self-inductance, and
the resistance of the coil respectively on the primary side. Similarly L2, C2, Cs, Ls, and Rs fulfill equivalent
roles on the secondary side.

An active rectifier, consisting of four MOSFETs (S5, S6, S7, S8), is employed for AC-DC conversion.
The DC-link capacitors, Cin and CO, are incorporated to smooth the voltage, while V1, V2 represent the input
DC voltage and battery voltage. uab and iL1 denote the output voltage and current of the inverter, respectively,
while ucd and iL2 represent the input voltage and current of the rectifier. io1 is the current between the DC-link
capacitors CO and battery. The mutual inductance between the two coils is denoted as M , and the coupling
coefficient k is given by: k = M

√
LpLs. This system topology is symmetrical, so it has the ability to achieve

bidirectional operation.

2.2. Control strategy for CP charging
With the implementation of the active rectifier, the ucd waveform can be shaped into a square wave

through phase shift control [24], allowing its pulse width W to be adjusted, as depicted in Figure 3. The
corresponding waveforms of iL2 and io1 are shown in Figure 4, where the pulse width of io1 corresponds to
that of ucd and remains adjustable. As a result, the output current Io can be controlled by varying the pulse
width of ucd.

Figure 5 illustrates the proposed control strategy. The predefined rated output power is represented
by Po,rated. The reference current Io,ref is computed by the divider based on Po,rated and the battery voltage
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V2, serving as the command input for the closed-loop current control system. To generate the gate signals for
MOSFETs S5, S6, S7, and S8, the modulator detects zero-crossing points by monitoring the input current iL2

of the active rectifier.
The hysteresis control algorithm is used in current close loop control, as depicted in Figure 6. If

Io lower than Io,ref − ∆i, the pulse width (W ) will increase, whereas if Io higher than Io,ref + ∆i, W will
decrease. This mechanism ensures that Io remains within the specified tolerance band. Since the battery
voltage changes gradually during the charging process, the dynamic response of the control algorithm is not a
significant concern. With the proposed strategy, the output power remains effectively constant.

To demonstrate how the proposed wireless charger achieves optimal efficiency, a fundamental har-
monic analysis (FHA) model is developed, as illustrated in Figure 7. In this model, X1 = ωL1, X2 = ωL2

represent the characteristic reactance in the primary side and secondary side. The variables up and us corre-
spond to the fundamental harmonics of uab and ucd, respectively. Up and Us represent the RMS value of up

and us. U̇p and U̇s represent the phasor forms of up and us.
As stated in [25], optimal efficiency is achieved when Up = Us. In the proposed wireless charger,

the DS-LCC compensation network’s characteristic ensures that the current İL2 flowing through L2 remains
constant. Additionally, the constant power control strategy make output power Po constant. Neglecting the loss
of the active rectifier, the Us can express as (1).

Us = Po/IL2 (1)

Consequently, Us is also constant during the charging process. Therefore, by designing the charger to satisfy
Us = Up, the wireless charger can maintain optimal efficiency throughout the entire constant power charging
process.
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Figure 2. Topology of the proposed wireless charger
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3. SIMULATION RESULTS AND DISCUSSION
3.1. Specifications

The proposed CP wireless charger is verified by conducting a simulation in Simulink. The parameters
were designed according to [1]. Other details of the simulation are listed in Table 1.

3.2. Simulation results
Figure 8 illustrates the variations in output power Po and output current Io with respect to the output

voltage V2. As V2 increases from 40 V to 60 V, Io decreases from 1.723 A to 1.137 A. Meanwhile, CP charging
is achieved, with Po remaining within the range of 67.842 W to 68.875 W. CP charging can be achieved by the
proposed charger.

The waveforms of the output voltage uab and output current iL1 of the inverter are shown in Figure
9. Zero-voltage switching (ZVS) is consistently achieved in the inverter. This advantage is inherited from the
traditional DS-LCC wireless power transfer system [1]. Figure 10 illustrates the DC-to-DC efficiency during
the charging process. The efficiency ranges from 94.44% to 94.52%, which is higher than the 87.5%–91.5%
efficiency of the CP wireless charger proposed in [21].

Table 1. Parameters of the wireless charger
Symbol Parameter Value
V1 Input DC voltage 40 V
V2 Battery voltage (output DC voltage) 40 V - 60 V
k Coupling coefficient 0.3
LP Transmitting coil inductance 111 µH
LS Receiving coil inductance 111 µH
RLp Transmitting coil resistance 0.2 Ω

RLs Receiving coil resistance 0.2 Ω

L1 Primary compensation inductance 35 µH
L2 Secondary compensation inductance 35 µH
RL1 Primary compensation inductor resistance 0.07 Ω
RL2 Secondary compensation inductor resistance 0.07 Ω

C1 Primary parallel capacitance 116 nF
C2 Secondary parallel capacitance 116 nF
CP Primary series capacitance 54 nF
CS Secondary series capacitance 60 nF
f Switching frequency 79 kHz
RON1 Inverter’s MOSFET on-state resistance 100 mΩ

RON2 Rectifier’s MOSFET on-state resistance 100 mΩ

Pref Reference power 68 W
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Figure 10. Efficiency during the CP charging

4. CONCLUSION

This work proposes a single-stage CP DS-LCC wireless charger with the corresponding control strat-
egy, eliminating the need for any SCC. The proposed CP charger can achieve CP charging and optimum ef-
ficiency simultaneously. The simulation is conducted to evaluate the performance of the proposed wireless
charger. The result shows that the proposed wireless charger maintains an efficiency of 94.44% to 94.52%
throughout the charging process, surpassing the performance of the previous work.
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