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 In photovoltaic energy systems, maximum power point tracking (MPPT) 

techniques are essential for optimizing power output under changing climatic 

conditions. Several techniques have been proposed in the literature, including 

classical techniques such as perturb and observe (P&O) and incremental 

conductance (INC), nonlinear controllers such as backstepping, and artificial 

intelligence-based techniques like fuzzy logic. This study compares the 

performance of an artificial neural network (ANN)-based MPPT approach 

with these nonlinear and classical MPPT techniques. It analyses the 

advantages and limitations of the various techniques to evaluate their 

performance in terms of efficiency, accuracy, and output power stability 

under changing climatic conditions. The study aims to help researchers select 

the most effective technique to improve the efficiency of photovoltaic 

systems. The simulation was carried out using MATLAB/Simulink. The 

simulation results indicated that the artificial neural network achieved better 

performance than the other techniques in terms of tracking speed, with an 

efficiency of up to 99.94%, while maintaining stable output power under 

changing climatic conditions. The backstepping controller also showed stable 

output power compared to traditional techniques. Fuzzy logic had a lower 

efficiency than both the artificial neural network and backstepping. 

Perturbation and observe and incremental conductance are easy to implement, 

but they showed oscillations around the maximum power point, which 

reduces the overall efficiency of the system.  
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1. INTRODUCTION 

Global solar energy production capacity is growing significantly, reaching a cumulative total of 

more than 1,000 gigawatts (GW) by 2024. This growth reflects the acceleration of the global energy 

transition to more sustainable and less polluting energy sources. solar energy offers significant advantages, 

such as reducing greenhouse gas emissions to combat climate change. Additionally, it promotes energy 

independence by decreasing reliance on fossil fuels and provides lower operating costs after installation [1]. 

Its flexibility allows it to be adapted from large power stations to domestic systems, and it can be used to 

power remote and isolated areas that often have no access to electricity grids, making this energy accessible 

in a wide range of areas [2], [3]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Solar energy or photovoltaic (PV) energy is generated from sunlight by PV cells connected in series 

and/or parallel to make up a photovoltaic generator. Each PV generator is characterized by its MPP, which 

depends on climatic conditions such as solar irradiance and temperature. Connecting this generator directly to 

a load can result in an operating point that is far from the MPP, making it necessary to use maximum power 

point tracking (MPPT) techniques to adjust this point and extract maximum power [4]. 

Researchers have developed several MPPT techniques. [5] proposed the perturbation and 

observation (P&O) technique, and [6] proposed a modified P&O to reduce oscillation and increase 

efficiency. [7] discussed the hill climbing (HC) technique. [8] presented the incremental conductance (INC) 

technique. These traditional techniques are widely used due to their simplicity, low cost, and reliability under 

stable conditions. However, they suffer from ineffectiveness in rapidly changing climatic conditions, slower 

convergence to the maximum power point, and potential oscillations around the peak, which can reduce the 

overall system efficiency. To address these problems, intelligent and nonlinear MPPT methods have been 

introduced, such as fuzzy logic (FL), which is presented in [9]. The work in [10] proposed an artificial neural 

network (ANN). Integrating ANN into photovoltaic systems offers a promising solution, potentially 

increasing efficiency by 2–3%. Partial swarm optimization (PSO) is studied in [11]. In nonlinear controllers 

[12] proposed a sliding mode controller (SMC) and [13] proposed a backstepping controller. Hybrid 

techniques aim to improve tracking accuracy, speed, and adaptability by taking advantage of both traditional 

and advanced techniques. The work [14] presents an optimal fuzzy logic controller-based PSO for a 

photovoltaic system. [15] proposed an MPPT technique based on artificial neural networks combined with 

backstepping. In [16], the authors propose a combination of incremental conduction and fuzzy logic. 

This paper compares an MPPT technique based on artificial neural networks with several other 

techniques, both nonlinear and conventional, including fuzzy logic, backstepping, perturbation and 

observation, and incremental conductance. This comparison aims to evaluate the performance of each 

technique in terms of speed, efficiency, and stability under constant or variable climatic conditions. This 

detailed analysis provides a deeper understanding of the strengths and limitations of each technique, giving 

researchers the information necessary to select the most suitable technique for their photovoltaic system 

application. This choice should be based on important metrics such as performance, cost, and complexity. 

The paper is structured as follows: i) Section 2 details the photovoltaic system; ii) Section 3 presents the 

technique for tracking maximum power points; iii) Section 4 presents the results and discussion; and iv) The 

paper concludes with a conclusion. 

 

 

2. PHOTOVOLTAIC SYSTEM 

The purpose of the PV system shown in Figure 1 is to maximize the power extracted from the PV 

array. The control mechanism of the system includes pulse width modulation (PWM), which takes the duty 

cycle (D) generated by the MPPT technique as input to produce a control signal 𝑢 that regulates the DC-DC 

converter switch S (typically a MOSFET or IGBT) [17]. The MPPT technique dynamically adjusts D to 

maintain the PV array at its MPP, adapting to variations in solar irradiance and temperature [15]. The DC-DC 

converter modulates voltage Vpv and current Ipv of the array to match the load requirements, ensuring that the 

PV array remains at its MPP.  
 
 

 
 

Figure 1. Photovoltaic system 
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The mathematical model of the system is described by (1)-(3). 

 

{
 
 

 
 𝐶𝑝𝑣

ⅆ𝑉𝑝𝑣

ⅆ𝑡
 =  𝑖𝑝𝑣 − 𝑖𝐿

𝐿
ⅆ𝑖𝐿
ⅆ𝑡
 =  𝑉𝑝𝑣 − (1 − 𝐷)𝑉 

𝐶
ⅆ𝑉

ⅆ𝑡
 =  (1 − 𝐷)𝑖𝐿 − 𝑖 

 

(1) 

(2) 

(3) 

 

The output voltage of the DC-DC converter can be expressed as (4): 

 

𝑉 =  
1

1−𝐷
 𝑉 𝑝𝑣  (4) 

 

where D is bounded within the interval [0,1]. 
 
 

3. MAXIMUM POWER POINT TRACKING TECHNIQUE 

3.1.  ANN-based MPPT technique 

An artificial neural network is a type of computational model inspired by the structure and function 

of biological neurons. It consists of interconnected nodes, called artificial neurons, which are responsible for 

processing and transmitting information. Integrating ANN into photovoltaic systems has the potential to 

improve energy efficiency and optimize power output. By analyzing data from various climatic factors, these 

networks can predict energy production and improve the overall management of PV systems [18], [19]. 

There are different types of artificial neural network architectures. Figure 2 illustrates the feedforward neural 

network architecture, which is characterized by its simplicity. In this type of network, data flows directly 

from the input layer to the output layer without cycles or loops [20]. The interconnected neurons are arranged 

into layers, with each layer fully connected to the subsequent one. It takes solar irradiance and temperature as 

inputs and voltage at MPP (Vmpp) as output. The error between the Vmpp and the actual photovoltaic voltage 

(Vpv) is then calculated. The resulting error signal is fed into a proportional-integral (PI) controller. The PI 

controller processes the error and generates D used to control the boost converter. By continuously adjusting 

the duty cycle, the controller ensures that the photovoltaic system operates at its maximum power point, 

thereby optimizing the efficiency of the energy conversion. 
 

 

 
 

Figure 2. Architecture of the ANN-based MPPT technique for photovoltaic systems 
 

 

3.2.  Fuzzy logic controller 

Fuzzy logic is a mathematical framework designed to model the uncertainty and imprecision inherent 

in human reasoning, allowing for variable degrees of truth between 0 and 1, rather than binary values of 0 or 1 

(true or false) [21], [22].  This controller is commonly employed in systems with complex or poorly modeled 

dynamics, such as PV systems, where it optimizes power output by adjusting parameters to changing climatic 

conditions [14], [23]. Figure 3 shows the general structure of the FL controller. 

- Fuzzification: This block receives the error 𝑒 =
𝑃 𝑘−𝑃 𝑘−1

𝑉𝑘−𝑉𝑘−1
  and the error rate 𝛥𝑒 as inputs and converts the 

crisp input values into fuzzy sets. Membership functions are used to assign degrees of membership to the 

inputs in predefined fuzzy sets, such as positive big (PB), positive small (PS), zero (Z), negative big 

(NB), and negative small (NS). 
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- Inference mechanism: This is the brain of the FL controller. It applies rules from the rule base, as shown 

in Table 1, to the fuzzy inputs. The rules are in the form of "if-then" statements; for example, if the error 

is PS and the error rate is PB, then the output is NB. 

- Defuzzification: Once the inference mechanism has determined the output fuzzy set based on the rules, 

this block converts the fuzzy output back into a crisp value, which is the duty cycle rate 𝛥𝐷. 

 

 

 
 

Figure 3. Structure of the FL controller 

Table 1. Fuzzy logic rules 
Rules E(K) 

PS PB Z NB NS 

𝚫𝐄 PS NS NB Z PB Z 
PB NB Z NS PB Z 

Z NS NB Z PS PS 

NB Z NB PS Z PB 
NS Z NB Z PB PS 

 

 

 

3.3.  Backstepping controller 

The backstepping controller, a Lyapunov-based nonlinear control technique, is adopted for 

photovoltaic systems due to its recursive design methodology that ensures global stability [24]. In the MPPT 

technique, it adjusts the control input to ensure that the system operates at its MPP while maintaining stability 

under varying climatic conditions [25], [26]. The design process of the technique is divided into two main steps:  

a) Step 1 

The first error   𝜀1 is defined by: 𝜀1 =  𝑦 − 𝑦𝑟𝑒𝑓 , where   𝑦 =  
𝜕𝑃

𝜕𝑉
  and 𝑦𝑟𝑒𝑓 =  0  (

𝜕𝑃

𝜕𝑉
= 0  at MPP). 

 

𝜀1̇ = 
𝜕

𝜕𝑡
(
𝜕𝑃

𝜕𝑉
) =  

𝜕𝑉

𝜕𝑡

𝜕

𝜕𝑉
(
𝜕𝑃

𝜕𝑉
) =  

𝜕𝑉𝑝𝑣

𝜕𝑡

𝜕

𝜕𝑉𝑝𝑣
(𝑖𝑝𝑣 + 𝑉𝑝𝑣

𝜕𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
)  (5) 

 

Using (1), (5) becomes (6). 

 

𝜀1̇ = 
1

𝐶𝑝𝑣
(𝑖𝑝𝑣 − 𝑖𝐿) (2

𝜕𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
+ 𝑉𝑝𝑣

𝜕2𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
2 )    (6) 

                         

       The Lyapunov function 𝑉1 =
 1

2
𝜀1
2 is a mathematical tool for analyzing the stability of dynamic 

systems, ensuring asymptotic stability by maintaining positive energy and a negative time derivative. The (7) 

expresses its derivative.  

 

𝑉̇1 = 𝜀1𝜀1̇ = 𝜀1
1

𝐶𝑝𝑣
(𝑖𝑝𝑣 − 𝑖𝐿) (2

𝜕𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
+ 𝑉𝑝𝑣

𝜕2𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
2 )      (7) 

 

The second error is 𝜀2 = 𝑖𝐿 − 𝛼1, where 𝛼1 is a virtual control input that is expressed in (8). 

 

    𝛼1 =  
𝐶𝑝𝑣𝐾1𝜀1

2
𝜕𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
+𝑉𝑝𝑣

𝜕2𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
2

+ 𝑖𝑝𝑣                                         (8) 

 

The (7) becomes (9) using (8). 

 

𝑉̇1 = −𝐾1 𝜀1
2 −

1

𝐶𝑝𝑣
(2

𝜕𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
+ 𝑉𝑝𝑣

𝜕2𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
2 )𝜀1𝜀2                                                                                    (9) 

                           

Where 𝐾1 is a positive constant. To eliminate the term  
1

𝐶𝑝𝑣
(2

𝜕𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
+ 𝑉𝑝𝑣

𝜕2𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
2 )𝜀1𝜀2 in (9), we proceed to step 2. 

b) Step 2 

Based on (2), the second error is expressed in (10). 

           

𝜀2̇ = 
1

𝐿
[𝑉𝑝𝑣 − (1 − 𝐷)𝑉𝑐] − 𝛼̇1                                                                                                     (10)   

     

Consider the second Lyapunov function    𝑉2 =  𝑉1 +
1

2
 𝜀2
2, its derivative is given in (11). 
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        𝑉̇2 = 𝑉̇1 + 𝜀2𝜀2̇           (11) 
 

The (11) becomes (12) using (10) and (9). 
 

𝑉̇2 = −𝐾1 𝜀1
2 + [−

1

𝐶𝑝𝑣
(2

𝜕𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
+ 𝑉𝑝𝑣

𝜕2𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
2 ) 𝜀1 +

1

𝐿
(𝑉𝑝𝑣 − 𝑉𝑐) +

1

𝐿
𝐷𝑉𝑐 − 𝛼̇1 ] 𝜀2                         (12) 

 

The duty cycle for controlling the boost converter is given in (13). 
 

𝐷 =  
𝐿

𝑉𝑠
(
1

𝐶𝑝𝑣
(2

𝜕𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
+ 𝑉𝑝𝑣

𝜕2𝑖𝑝𝑣

𝜕𝑉𝑝𝑣
2 ) 𝜀1 −

1

𝐿
(𝑉𝑝𝑣 − 𝑉𝑐) + 𝛼̇1 − 𝐾2𝜀2)  (13) 

 

Therefore 𝑉̇2 = −𝐾1 𝜀1
2 − 𝐾2 𝜀2

2 < 0, where K2 is a positive constant; consequently, our system is globally 

asymptotically stable. 
 

3.4.  Perturbation and observation 

The perturbation and observation technique is based on continuously adjusting the operating point 

of the PV array and observing the resulting changes in output power. The technique adjusts D based on the 

sign of dP and dV [27]. If  
dP

dV
= 0 it means that the system is at the MPP. If dP and dV have the same sign, 

the duty cycle is reduced by subtracting the fixed step size ΔD otherwise, the duty cycle is increased to move 

towards the MPP [4], [28]. Figure 4 shows the flowchart of the P&O technique. 
 

3.5.  Incremental conductance  

The incremental conductance technique is considered one of the most effective MPPT techniques 

due to its balance of cost-effectiveness and ease of implementation. It is based on analyzing the slope of the 

current-voltage curve 
dI

dV
. If  

dI

dV
= 0, the system is at the MPP, and the duty cycle remains constant until 

climatic conditions change. If 
dI

dV
< 0 the operating point is to the right of the MPP; thus, the duty cycle must 

be increased [29]. Conversely, if 
dI

dV
> 0, the duty point is to the left of the MPP, and the duty cycle must be 

reduced. Figure 5 shows the flowchart of the technique. 
 
 

 
 

Figure 4. Flowchart of the P&O technique 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

ANN-based MPPT for photovoltaic systems: performance analysis and … (Khadija Abdouni) 

2785 

 
 

Figure 5. Flowchart of the INC technique 

 

 

4. RESULTS AND DISCUSSION  

The techniques proposed in this paper are tested under both standard and variable climatic conditions 

to assess their performance and adaptability. The simulation was carried out using MATLAB/Simulink. Figure 

6 illustrates the simulated photovoltaic system, which includes a PV generator consisting of three parallel 

strings, each containing four modules connected in series of the AREi-230W-M6-G module. The detailed 

parameters of this module are presented in Table 2. The parameters of the boost converter used in the system 

are C1 = 4 mF, L = 0.1 mH, C2 = 10 mF, and R = 20 Ω. 

 

 

 
 

Figure 6. Studied PV system modeled in MATLAB/Simulink 
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Table 2. AREi-230W-M6-G model parameters 
Parameter Value 

Voltage Vmpp   30.72 V 
Current Impp   7.5 A 

Maximum power Pmax   230.4 W 

Current of short circuit Isc  8 A 
Voltage of open circuit Voc  37.14 V 

Open circuit temperature coefficient Voc  -0.3533 V/°C 

Short circuit temperature coefficient Isc 0.0553 A/°C 
Number of cells 60 

 

 

4.1.  Results under standard climatic conditions  

The parameters of the ANN-based MPPT technique were trained and optimized using the mean 

squared error (MSE) metric, which calculates the mean squared difference between predicted and actual 

values. To achieve this, the dataset was divided into three subsets. The training set, comprising 70% of the 

data, was used to adjust the weights and biases of the ANN during the training phase. A validation set, 

consisting of 15% of the data, was used to monitor the model's performance and prevent overfitting. Finally, 

the test set, also consisting of 15% of the data, was used to evaluate the model's final performance. The results 

are presented in Figure 7. Figures 8 and 9, respectively, illustrate the PV power and voltage obtained by the 

MPPT techniques tested under standard climatic conditions, corresponding to solar irradiation of E =  

1000 W/m² and a temperature of T = 25 °C. 

 

 

 
 

Figure 7. Training performance of the ANN model: mean squared error versus training epochs 

 

 

 
 

Figure 8. PV power under standard climatic conditions 
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Figure 9. PV voltage under standard climatic conditions 

 

 

The results show that all MPPT techniques converge to the MPP, each with unique performance 

characteristics. ANN demonstrates the fastest performance, high accuracy, stable PV power, and an efficiency 

of 99.97%. FL reaches the MPP quickly but overshoots slightly and stabilizes at 0.08 seconds with an 

efficiency of 99.32%. Backstepping achieves stable PV power with fewer oscillations than P&O, INC, and FL 

and has a high efficiency of 99.88%. P&O exhibits the slowest performance, primarily due to initial 

oscillations, and achieves an efficiency of 99.21%. INC stabilizes faster with fewer oscillations but achieves 

the same efficiency as P&O.  

 

4.2.  Results under variable climatic conditions  

The evaluation of MPPT techniques under constant irradiance and temperature is insufficient to 

reflect their real-world performance. To address this, the techniques are tested under three scenarios with 

varying climatic conditions, as shown in Figure 10, to assess their ability to track the MPP under rapid 

environmental changes. The resulting PV power and voltage are presented in Figures 11 and 12, respectively. 

The performance of ANN-based MPPT is evaluated under three different scenarios of climatic 

conditions and compared with other MPPT techniques (P&O, INC, FL and Backstepping) based on their 

rabidity, stability, and tracking efficiency: 

- In scenario 1 [0, 0.5s], the solar irradiance is set to 600 w/m² and the temperature is 30 °C, representing a 

low solar irradiance condition with relatively lower available maximum power. Under these conditions, 

the ANN-based MPPT and backstepping controller show excellent adaptability by quickly converging to 

the MPP. In contrast, P&O and INC take longer to stabilize and show significant oscillations around the 

MPP due to their iterative perturbation approach. FL achieves acceptable performance but converges 

slower than ANN and backstepping. ANN's ability to learn and predict the MPP ensures higher tracking 

efficiency and minimal power dissipation, making it particularly effective in low irradiance conditions. 

- In scenario 2 [0.5, 1s], the solar irradiance increases to 1000 W/m² and the temperature decreases to 20°C, 

resulting in a higher available MPP. This scenario represents a sudden change in climatic conditions. The 

ANN-based MPPT shows excellent performance, achieving convergence to the MPP while maintaining 

excellent stability. Backstepping also performs well, with a tracking speed comparable to ANN, but 

requires precise adjustment of the control parameters for optimal results. In contrast, P&O and INC show 

significant delays in adapting to the new MPP, along with overshoots and oscillations that reduce the 

overall efficiency. FL performs better than P&O and INC, providing more stable tracking, but remains 

slower than ANN due to its rule-based approach. ANN's fast and accurate response to these climatic 

changes demonstrates its effectiveness and adaptability in tracking the MPP under rapidly changing solar 

irradiance and temperature. 

- In scenario 3 [1, 1.5s], the solar irradiance decreases to 800 W/m² while the temperature increases to 

25°C, resulting in a reduced MPP. The ANN-based MPPT adapts smoothly and efficiently to the new 

MPP, maintaining stable operation and minimizing power loss during the change in climatic conditions.  

Backstepping also effectively tracks the new MPP, but its performance is less efficient in this scenario. On 

the other hand, P&O and INC are slower to adapt to the new MPP and show significant oscillations 

around the MPP, reducing their overall efficiency. FL, although more adaptive than P&O and INC, 

responds more slowly than ANN, resulting in a low efficiency in tracking the MPP. 
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Figure 10. Test scenarios for varying irradiance and temperature conditions 
 

 

 
 

Figure 11. PV power under three different climatic condition scenarios 
 
 

 
 

Figure 12. PV voltage under three different climatic condition scenarios 
 

 

Table 3 summarizes the results obtained from this comparison under both standard climatic 

conditions and rapidly changing climatic scenarios. The performance of various MPPT techniques, including 

ANN, FL, backstepping, P&O, and INC, is evaluated based on key metrics such as efficiency, tracking error, 

tracking speed, and oscillation behavior. The results show that the ANN-based MPPT technique achieves the 

maximum efficiency, more than 99.96% in all climatic conditions, with negligible error and the fastest 

response times, as low as 0.001 seconds. In addition, ANN is characterized by stable operation with no 

oscillations, even under rapidly changing solar irradiance and temperature. This demonstrates its superior 

adaptability and reliability compared to the other MPPT techniques evaluated. 
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Table 3. Performance metrics of MPPT techniques 
Climatic conditions G (w/m2) 1000 600 1000 800 

T (ºC) 25 30 20 25 

Pmax (W) ''Theoretical'' 2764.8 16225 2822.27 2214.01 

ANN − Efficiency (%) 

− Error (%) 

− Tracking speed (s) 

− Oscillation 

99.97 

0.02 
0.03 

none 

99.96 

0.03 
0.05 

none 

99.99 

0.009 
0.02 

none 

99.99 

0.004 
0.001 

none 

FL − Efficiency (%) 

− Error (%) 

− Tracking speed (s) 

− Oscillation 

99.32 
0.67 

0.08 

Low 

99.29 
0.70 

0.09 

Low 

99.35 
0.64 

0.06 

Medium 

99.32 
0.67 

0.03 

Medium 

Backstepping − Efficiency (%) 

− Error (%) 

− Tracking speed (s) 

− Oscillation 

99.88 
0.13 

0.14 
Low 

99.90 
0.09 

0.12 
Low 

99.95 
0.04 

0.01 
Low 

99.90 
0.09 

0.01 
Low 

P&O − Efficiency (%) 

− Error (%) 

− Tracking speed (s) 

− Oscillation 

99.21 

0.78 

0.06 
High 

99.22 

0.77 

0.08 
High 

99.24 

0.75 

0.04 
High 

99.27 

0.72 

0.02 
Medium 

IC − Efficiency (%) 

− Error (%) 

− Tracking speed (s) 

− Oscillation 

99.29 

0.71 
0.03 

Medium 

99.22 

0.77 
0.05 

Low 

99.28 

0.71 
0.01 

Medium 

99.23 

0.76 
0.005 

Medium 

 

 

5. CONCLUSION 

MPPT techniques are essential for optimizing the energy production of photovoltaic systems to 

ensure that they operate at maximum power even under variable climatic conditions. In this study, the 

performance of an ANN-based MPPT controller under different scenarios of climatic conditions was 

evaluated using MATLAB/Simulink and compared with conventional techniques such as perturb and 

observe, incremental conductance, fuzzy logic controller, and backstepping controller. The simulation results 

showed that ANN-based MPPT outperformed the other techniques, achieving the highest efficiency (up to 

99.94%) with fast tracking and low oscillation. Its robustness under rapidly changing climatic conditions 

allowed it to maintain stable output power while accurately tracking the MPP. 
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