International Journal of Power Electronics and Drive System (LJPEDS)
Vol. 16, No. 3, September 2025, pp. 2072~2081
ISSN: 2088-8694, DOI: 10.11591/ijpeds.v16.i3.pp2072-2081 a 2072

Digital twin-based performance evaluation of a photovoltaic
system: A real-time monitoring and optimization

framework

Mustafa Fadel?, Fajer M. Alelaj>?

!Electrical Engineering Department, Mustansiriyah University, Baghdad, Iraq
2School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom

3Kuwait Institute for Scientific Research, Kuwait City, Kuwait

Article Info

ABSTRACT

Article history:

Received May 23, 2025
Revised Jun 17, 2025
Accepted Jul 23, 2025

Keywords:

Digital twin
Optimization
Photovoltaic system
Real-time monitoring
Renewable energy system

The digital twin (DT) technology implementation in photovoltaic (PV) systems
provides an innovative approach to real-time performance monitoring and
predictive maintenance. In this paper, an end-to-end DT framework for real-time
performance analysis, fault detection, and optimization of a 250 W PV system
is proposed. A physics-based equation and Al-based prediction hybrid DT
model is developed through MATLAB/Simulink, trained from real data acquired
by means of a testbed. The DT simulates the dynamic physical PV system
behavior and adjusts itself using self-correcting algorithms to enhance precision
in prediction and forecast power output at high fidelity. Results indicate that
the DT gives the true response of the PV system with very small differences
attributable to model approximations and sensor faults, 95% error minimization
after compensation, and a root mean square error (RMSE) of 2.8 W, indicating
its applicability for real-time monitoring and predictive main-maintenance. The

work here focuses on the feasibility of applying DTs towards the autonomous
optimization of distributed renewable energy systems.
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1. INTRODUCTION

Renewable energy systems based on photovoltaic (PV) energy have become a crucial part of
sustainable energy portfolios worldwide, with increasing adoption driven by their sustainability and declining
cost. However, large PV systems are subjected to many challenges that affect their performance and efficiency,
due to their outdoor installations [1]], [2]. Challenges such as technical system issues and environmental
conditions act as obstacles affecting the system’s reliability and life span. The technical challenges include
voltage and current fluctuations, high DC voltage ripple, conversion efficiency, power quality issues, thermal
management, and degradation over time [3]], [4]. Environmental challenges, including dust, snow coverage,
and weather variability, also play important roles by impacting the PV system performance [5], [6]. To
maintain high operational efficiency under different environmental and technical conditions, sophisticated
monitoring and optimization techniques are required. Digital twin (DT) technology emerges as game-changing,
by providing a virtual match to the real-world system in real-time. This mirror model of the physical system can
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offer unprecedented potential in autonomous optimisation and predictive analytics [7]. DT facilitates ongoing
evaluation of PV system performance by fusing sensor-driven data collection and computational modelling,
enabling proactive fault diagnosis and improved predictive maintenance techniques. The recent state of the
art highlights the importance of emerging DT in renewable energy systems, where researchers in [8] found
that the DT system could detect different faults, such as 20% drift in sensor reading in the PV conversion
unit, within a short duration. Delussu ez al. [9] compare two different DT approaches to predict solar energy
production and create a hybrid DT system by combining the two studied systems to improve predictions. Lee
et al. [10] propose a novel generative data-driven model based on numerical weather prediction that effectively
produces environmental data to simulate the future behaviour of PV DT systems. Moreover, the study in [[11]
introduces an innovative DT system that integrates a novel circuit-long short-term memory (LSTM) model with
a proposed triangle-shading pattern estimation method, eliminating dependencies on direct irradiance sensing
and historical data.

2. DIGITAL TWIN TECHNOLOGY

To understand how a DT functions, two key aspects must be addressed. This section will outline the
DT design requirements, including the necessary tools for building an efficient virtual system. Furthermore, it
explores the development stages of the DT, focusing on its intended function and operational capabilities.

2.1. Digital twin design requirements

To develop an effective DT, there are several technical, data, software, and engineering requirements
that must be met to ensure simulation accuracy and optimize performance. Figure 1 illustrates the DT design
system, where each PV DT needs hardware infrastructures represented as different types of sensors such as
environmental sensors represented by Pyranometers that are used to measure the amount of falling irradiance
on PV modules, temperature sensors for PV panels and ambient, humidity, wind speed, and dust sensors to
assess the impact of the environment on performance, or electrical measurements sensors such as voltage,
current, and power measurements from PV modules and inverters [12], [13]. In addition, each DT requires an
edge computing unit that is used to process the initial data before sending it to the cloud to reduce latency
and improve DT responsiveness. To ensure data integrity, a reliable communication network is required,
for example, different IoT protocols such as Message Queuing Telemetry Transport (MQTT), Open Platform
Communications Unified Architecture (OPC UA), or Modbus is required, especially for applications needing
fast response and in remote locations [4]], [S]].

Moreover, the quality of received data and its accuracy play a crucial role in DT performance,
where data must be up-to-date, accurate, and uninterrupted to ensure the reliability of the numerical
simulation. Additionally, using cloud databases can be efficient for big data processing gathered from real-time
analysis and using machine learning (ML) techniques to analyze big data, predict failures, and improve
performance. The presence of software support is essential in building a rugged DT system [14], [15].
Data management and artificial intelligence (AI) platforms can predict energy consumption, detect faults, and
create interactive dashboards to display data and analyze performance. Furthermore, software programs like
MATLAB/Simulink® and NSYS® that use modelling and simulation engines can play an important role in
developing accurate physical numerical models based on PV performance equations and the effect of heat
on solar panels. Engineering and physical requirements are important to design integrated models for PV
systems, where the DT must be able to simulate all PV system components. Components such as solar panels
and the effect of gradual corrosion, inverters’ effect on performance, batteries (storage systems) and their life
cycle based on charging and discharging patterns, and integration with the electrical grid and energy flow
management [16]]. Moreover, the DT must be designed to be expandable to include large solar power plants
or integrated smart electrical grids, and the design must be compatible with the existing solar infrastructure to
facilitate integration without the need to redesign the system from scratch [[17]].

2.2. Digital twin development stages

Digital twin creation is a highly advanced process that moves in different steps to develop an accurate
digital model of the physical system’s real life. As indicated in Figure 2, the process of DT development can be
divided into a series of stages. Data collection and system integration phase, where the DT is based primarily
on real data coming from the solar system provided by different types of sensors deployed, and ensuring
that data coming from different devices and sources is synchronized. Furthermore, providing communication
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infrastructure to ensure that the network can transmit data in real time without significant delay and store
the gathered data in an appropriate storage mechanism [3]. Model development and simulation is the next
phase of DT development, where in this stage the DT will be built depending on type selection whether it is a
physics-based twin that relies on physical equations to model the behavior of the system, data-driven twin that
relies on Al and data analysis, or hybrid twin that combines physical modeling and Al to increase accuracy
[L6]. At this stage, model validation and calibration are examined by comparing DT results with real data to
detect discrepancies and correct errors, and tune the model based on actual operating data to improve accuracy
and reliability.

The next stage is system integration and control, where the digital twin is linked to the actual systems,
and intelligent control mechanisms are activated. Integration with systems to monitor the performance of
the PV system and to show information and analysis. Additionally, with the use of predictive analytics for
fault detection in advance by developing deep learning systems and analyzing patterns for improved energy
efficiency, and enabling automatic control and performance optimization through dynamic adjustment of solar
inverter parameters based on actual operating conditions [14]]. The stage of software development is the final
and continuous observation, wherein DT must be executed and observed so that the goals to be realized are
achieved by executing and testing the system in real life to see how the digital twin behaves for different
operating conditions to confirm its stability, and comparing the predicted results with real data from the real
system. Furthermore, continuously updating digital models as new operating data becomes available and tuning
software and algorithms to improve performance based on changes in operating conditions by relying on the
DT to predict potential failures and take proactive measures, and run real-time analytics to detect any decline
in system efficiency [18].
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Figure 2. Digital twin development stages

3.  DIGITAL TWIN APPLICATIONS IN PV SYSTEM

The modern PV systems utilise the DT to predict and optimise their performance. Providing real-time
monitoring to the full PV system can maximise its performance under different environmental conditions.
Real-time data are gathered from the PV system to be analysed by the virtual twin, resulting in early prediction
of future system issues [6]. Moreover, by using Al tools, the DT can predict possible faults in the PV
system, whether at the PV side level, such as PV modules efficiency dropping due to environmental condition
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fluctuations, or converter level, where components fail (inductor, capacitor, or switches). Spotting these issues
can increase the system’s reliability by reducing system fault periods and enabling predictive maintenance
[19], [20]. Furthermore, increasing the PV system efficiency can be achieved by integrating such technology
and experimenting with different scenarios, such as PV module implementation angles to optimise irradiance
exposure, the shadowing effect, and different environmental conditions, providing the best settings to increase
system efficiency [21]]. Also, the DT can be used in smart grids to distribute the power efficiently by storing
it or redirecting it to the main grid when needed. Moreover, incorporating DT can help to modify the system
design, such as adding new units or changing storage technologies before implementing the physical system,
impacting the cost and time [22].

4. CHALLENGES OF DT IN PV SYSTEM

In spite of many benefits being linked with combining DT technology with PV systems, there are
several issues related to the use of such technologies. Use of DT entails several technical issues, including
the creation of a precise virtual model for the PV system that requires proper understanding of different
behaviour of the components of the PV system, such as PV modules, inverters, batteries, and environmental
conditions. Modelling such a system requires advanced calculations, including the dynamic changes in
irradiance, ambient temperature, and normal ageing in PV modules [14]. In addition, different designs and PV
system performance can vary from one location to another making it challenging to develop a general model
that suits all applications. Furthermore, DT relies on data acquired from sensor equipment, energy transducers,
weather databases, and IoT analytics, with non-unified standardisation for various system equipment makes it
difficult to integrate information from different makers [23]]. Response time and real-time analysis are others
tough ones, in which the DT must assess data and handle errors in real time, that can be backed by powerful
cloud computing servers and rapid connectivity networks [[16]. Latency in data transmission may affect the
speed of decision-making in critical situations, such as sudden failures or low energy efficiency. In addition, DT
accuracy can be affected by fluctuations in weather factors, where DT depends on the availability of accurate
climate data, and some areas lack of accurate data or are affected by unexpected climate changes, such as dust
storms or sudden irradiance changes that may affect the accuracy of DT forecasts [5]. Furthermore, operating
in harsh environments requires regular maintenance and continuous replacement, leading to increase operating
and maintenance costs.

5. PROPOSED DT SYSTEM

To understand the DT work and test it in a real environment, it is essential to examine it in real-world
circumstances with actual data. The full PV system is illustrated in Figure 3(a), which consists of multiple
PV units, each connected to the main DC-bus through DC boost converter and connected to a central inverter
for microgrid application. The examination will take place through building a virtual twin that simulates
the performance of the physical system via sensing and analysing real-world data, where a data acquisition
unit logging measurements at 1-minute intervals through sensor network for capturing irradiance, temperature,
voltage, and current. The model uses a trained feedforward neural network (FNN) developed using MATLAB’s
Neural Network Toolbox with 10,080 training samples (1-week, 1-minute resolution). It is a two-hidden-layer,
10 then 15 neuron model, and uses Levenberg-Marquardt (trainlm) training algorithm. There is a module for
detecting errors, which measures the difference between the prediction and actual power. When the difference
exceeds 5W, a rolling average for 5 intervals is computed and is used to bias the prediction result adaptively.
Resulting in a mirrored system uses a feedback loop for error detection and correction, used to optimise the
overall system performance and minimise future maintenance. Figure 3(b) shows the circuit diagram of the
DC/DC boost converter powered by a PV module with its specifications illustrated in Table 1. Building the DT
will be based on modelling the basic physical behaviour of the PV system using mathematical equations for the
PV cell [? ]. For a single-diode PV module, the current-voltage relationship for a PV module is given by (1).

V+IURS V+IURS
f = o (L) ) VIR 0

Where I, is the PV output current, V},, is output voltage, I, is the photocurrent, I is the diode reverse
saturation current, I?; is the series resistance, Ry, is the shunt resistance, n diode ideality factor, and V; is the
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thermal voltage given by V;, = kTT' Where k is Boltzmann constant (1.380649 x 1022 J/K), T is the PV cell
temperature, and q is the electron charge (1.602176634 x 10~'° C).
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Figure 3. The overall DT proposed system: (a) PV power system and (b) power conversion unit

Table 1. PV panel parameters

Parameter Symbol Value Unit
Rated power Py rated 250 w
Voltage at max power Vinp 30 v
Current at max power Imp 8.33 A
Open-circuit voltage Voe 37 v
Short-circuit current Ise 8.75 A
Number of cells Neells 60 -
Temperature coefficient of power B8 -045  %/°C
Temperature coefficient of voltage Kv -0.34  v/°C
Temperature coefficient of current Kr 0.05 A/°C

The photocurrent (/1) released by the PV cell is a function of the solar irradiance (&) and temperature
(T) given as (2) [8].

G

I = (Iph,sre + Ki(T — Tsre)) Goro

)

Where the standard test conditions (STC) are at 7' = 25 °C and G = 1000 W/m?. The diode reverse saturation
current is represented as (3) [12].

T \* E 1 1
Iy = I -9 _
o = lo,sTC (TSTC) exp (nk (TSTC T)) 3)
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Both open-circuit voltage (V,,.) and short-circuit current (/,.) are shown as (4) [23].
Voc<T) = Voc,STC + KV (T - TSTC) (4)
Iio(T) = Isc,s7c + K1 (T — Tsre) (5)

Where K and Ky are the temperature coefficients of current (A/°C) and voltage (V/°C) respectively. The
maximum PV power is illustrated as (6).

Pmaa:(T) = Pmaa:,STC (]- + 5(T - TSTC)) (6)

Where £ is the temperature coefficient of power.

6. SIMULATION RESULTS AND DISCUSSION

The proposed system will have a 250 W PV module, where a parallel MATLAB/Simulink® model
will simulate the expected PV output using single-diode mathematical equations and utilise ML for power
forecasting. Using irradiance (pyranometer) and temperature (PT100) sensors to take real-time measurements
will help to compute PV panel performance under different environmental conditions. The operation of the DT
was validated using real and synthetic data under incremental irradiance (200 to 1000 W/m?) and temperature
(15 °C to 35 °C) variations. The proposed system uses advanced visualisation by providing comprehensive
performance plots for system behaviour to varying environmental factors. Figure 4(a) illustrates both real and
digital output power response to step-wise irradiance increase, while Figure 4(b), represents the performance
under ambient temperature increase, where the output power is affected negatively at higher temperature.
Furthermore, Figure 4(c), reveals the effects on PV performance under varying sunlight and temperature
conditions. From the illustrated results, it is noticeable that the DT correlated well with the measurements,
presenting a small error factor. The Al-enriched DT exhibited high accuracy and low lag in transitions.
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Figure 4. PV output power behaviour under: (a) increasing irradiance, (b) temperature increase, and
(c) varying irradiance and temperature.
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To test the reliability of DT and how it can adapt to sensor errors and environmental changes without
manual intervention, a self-degradation and correction analysis takes place by continuously comparing the
predicted power output with the actual measured output. The DT detects periods when predictions deviate
significantly from the real system beyond a set threshold value of 5 W (~2%) of the maximum PV power
(250 W), and this deviation persists for three consecutive samples, it flags an anomaly. To correct this, the
system employs a five-frame rolling average of past prediction errors and adjusts subsequent predictions by an
adaptive bias. This light-weight correction scheme greatly improves real-time alignment without computational
overhead. As shown in Figure 5, 39 errors were correctly detected, with no false positives. Observing the
system’s adaptability to these errors.

The quantitative numerical performance of the DT model was evaluated quantitatively against three
common measures of error: root mean square error (RMSE), mean absolute error (MAE), and the coefficient of
determination (R?). The DT achieved an RMSE of 2.8 W, which indicates that, on average, the simulated power
output deviated from the measurement by 2.8 watts, with greater sensitivity to larger errors. The MAE was 2.1
W, representing a low and relatively stable mean absolute prediction error over the dataset. The model also
had an R? of 0.984, which confirms that 98.4% of the variance in actual PV power output was well represented
by the predictions from the DT. These results confirm the high accuracy and reliability of the DT model in
the simulation of the real-time operating behaviours of the photovoltaic system under various environmental
conditions. Figure 6 displays how self-correction mechanisms adjust these deviations as the DT corrections
align closely with real system performance, with error reduction after correction reaching 95%. To ensure
rugged performance under varying conditions, power loss trends over time are highlighted in Figure 7, where
it represents how much power the DT model underestimates compared to the physical system over time, and
the maximum power error found is 11.2 W. This is crucial as identifying where and when the losses occur can
be efficient for refining the DT’s prediction model, resulting in optimizing the overall performance. Figure
8 compares the dynamic efficiency of the physical PV system and digital twin in a period of 50 seconds.
The two curves are virtually identical with a difference of less than 0.1%, confirming the reliability of the
DT to reproduce the dynamic performance of the system. The agreement proves the reliability of the DT to
track efficiency and its applicability for diagnostics and optimization. Figure 9 illustrates a histogram of power
prediction errors between the actual PV system and digital twin, from 4 W to 11 W. Most errors are concentrated
in the ranges 5-6 W and 10-11 W, indicating that while DT is generally accurate, larger deviations could occur
during dynamic transitions or sensor faults. These variations are within the real-time prediction tolerance, and
the spread warrants the use of DT’s self-correction facility to adaptively reduce such discrepancies.
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7. CONCLUSION

The implementation of DT technology on renewable energy systems is a tremendous advancement
in real-time monitoring, fault diagnosis, performance improvement, and predictive maintenance. A hybrid DT
model of a 250 W PV system was proposed in this study by the fusion of physics-based equations and Al-based
prediction. The system was very accurate in replicating real-world PV behaviour, with an RMSE of 2.8 W and
a coefficient of determination (R?) of 0.984. Reliability was also enhanced by an inherent self-correcting
mechanism, with reductions in error deviations of up to 95% across 39 anomalies that were detected. Power
loss analysis showed the 11.2 W peak prediction error in the dynamic environment conditions, revealing the
DT’s variability diagnosis and compensation capability in practical operation. System experimental verification
was conducted using real-time data, illustrating pragmatic usefulness. These findings depict the potential of
DTs in facilitating smart, autonomous energy systems that react dynamically and pave the way for integration
with storage, smart grids, and edge computing platforms.
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