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 This paper proposes a digital implementation of the direct torque control 
(DTC) of an Induction Motor (IM) with an observation strategy on the Field 
Programmable Gate Array (FPGA). The hardware solution based on the 
FPGA is caracterised by fast processing speed due to the parallel processing. 
In this study the FPGA is used to overcome the limitation of the software 
solutions (Digital Signal Processor (DSP), Microcontroller...). Also, the DTC 
of IM has many drawbacks such as for example; The open loop pure 
integration has from the problems of integration especially at the low speed 
and the variation of the stator resistance due to the temperature. To tackle 
these problems we use the Sliding Mode Observer (SMO). This observer is 
used estimate the stator flux, the stator current and the stator resistance. The 
hardware implementation method is based on Xilinx System Generator 
(XSG) which a modeling tool developed by Xilinx for the design of 
implemented systems on FPGA; from the design of the DTC with SMO from 
XSG we can automatically generate the VHDL code. The model of the DTC 
with SMO has been designed and simulated using XSG blocks, synthesized 
with Xilinx ISE 12.4 tool and implemented on Xilinx Virtex-V FPGA. 
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1. INTRODUCTION 

With technological advancement in the field of microelectronics new digital solutions such as 
FPGAs (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit) are available and 
can be used as numerical targets for the implementation of algorithms command. The inherent parallelism of 
these digital solutions and their high calculation capacity make the calculation time is negligible in spite of 
the complexity of the algorithms to be implanted. These hardware solutions can meet the new demands of 
modern controls, such as reduction of the calculation time, the processing parallelism of these hardware 
solutions allows integrating on a single target several algorithms that provide various features and which can 
work independently of each other. For the control of the variable speed electrical machines, various control 
algorithms can be used. These algorithms often have several nested control loops. In our case we use the 
DTC that contains a speed control loop, stator flux regulator, electromagnetic torque regulator and the sliding 
mode observer; this is why we are interested in the implementation on FPGA of Direct Torque Control based 
on the sliding mode observer for controlling an induction motor. During the past few years several 
researchers use the FPGA for controlling electrical system [1]-[7]. Most of them develop the algorithm on a 
VHDL hardware description language. For the hardware implementation of the Directe Torque Control with 
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Sliding Mode Observer of an induction motor on the FPGA we use Xilinx System Generator (XSG) toolbox 
developed by Xilinx and added to matlab/simulink. The XSG advantages are the rapid time to market, real 
time and portability. Once the design and simulation of the proposed algorithme is completed we can 
automatically generate the VHDL code in Xilinx ISE. 

The DTC of IM is based on the orientation of the stator flux by a direct action on the states of the 
switches of the inverter [8]-[11]. The DTC control based on an open loop estimator of stator flux having 
well-known problems of integration especially at a low speed [12]-[14]; also, it is sensitive to the variation of 
the machine parameters such as stator resistance [15]. To solve these problems many observation methods 
are used, such as the Extended Kalman Filter [16] but the drawback of this observer that the knowledge of 
load dynamics is not usually possible, Model Reference Adaptive System (MRAS) [17], [18]; the drawback 
of this algorithm that it is sensitive to uncertainties of the induction motor parameters, the luenberger 
Observer is used for state estimation of IM [19]. In this work, we propose to use the adaptive sliding mode 
observer for the estimation of the stator flux, stator current and the adaptation of the variation of the stator 
resistance. That is a powerful observer that can estimate simultaneously the stator flux, stator current, rotor 
speed and motor parameters. It is introduced to replace the open-loop estimator of stator flux. Furthermore it 
has been provided with an adaptation mechanism of the stator resistance. Thus, the aim of this paper is first, 
to give a fair comparison between a DTC with an open loop estimator and DTC with sliding mode observer 
at the stage of adjustment of the stator resistance. Secondly, the proposed model is developed using Xilinx 
System Generator for implementation on FPGA, to enjoy the performances of FPGAs in the field of digital 
control of electrical machines in real time. The performance of the proposed model is proved by simulation 
results, Resources used and execution time. 
 
 
2. DIRECT TORQUE CONTROL OF AN INDUCTION MOTOR 
2.1. Induction Machine Model 

The state model of an induction machine can be expressed as follows: 
 

   
.

d X
A X B U

d t
                                                                                                          (1)

      

                                                                                                                    
 

Where A, B, X and U are the evolution matrix, the control matrix, state vector X and the stator voltage 
respectively.  
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The state vector X is composed by stator current and flux components. The vector command U is 

constituted by the stator voltage components. 
 

2.2. Direct Torque Control Principle 
Direct torque control of an induction machine is based on the direct determination of the control 

sequence applied to the switches of a voltage inverter. The choice of sequences is based on the two hysteresis 
comparators of the stator flux and electromagnetic torque [20]. The voltage vector Vs is the output of a three-
phase voltage inverter whose the state of the inverter switches are controlled by three Boolean variables Sj (j 
= a, b, c). The voltage vector can be written as: 
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The components of the stator voltage vector   SSS VVV ,  and the stator flux vector 

 ,S S S     in Concordia reference are given by Equation (4) and (5). The calculation of the position and 

module of the stator flux are based on the use of components  ,S S   . The module of the stator flux and 

its position are given by Equation (6). 
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 The electromagnetic torque is expressed in terms of the components of stator flux vector and the 

components of stator current vector as: 
 

3
( )

2e s s s sC p i i                                                                                                        (7) 

 
The estimated values of the stator flux and electromagnetic torque are compared with their reference 

values Φsref, Teref respectively. Switching states are selected by the switching table, where CE  is the error 

of electromagnetic torque after hysteresis block and E  is the error of the stator flux after hysteresis block, 

( 1...6)iS i  means the sector (Table 1) [21]: 

 
 

Table 1. Switching table for direct torque control 

E  Ec S1 S2 S3 S4 S5 S6 
 1 V2 V3 V4 V5 V6 V1

1 0 V7 V0 V7 V0 V7 V0
 -1 V6 V1 V2 V3 V4 V5

 1 V3 V4 V5 V6 V1 V2
0 0 V0 V7 V0 V7 V0 V7
 -1 V5 V6 V1 V2 V3 V4

 
 

The structure of DTC of an induction motor is given, as shown by the Figure 1: 
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Figure 1.  Schematic of conventional DTC 
 
 

3. DIRECT TORQUE CONTROL OF AN INDUCTION MOTOR WITH SLIDING MODE 
OBSERVER 

The sliding mode observer (SMO) is wedely used for non linear systems due to its robustness to the 
parameter variations. The SMO is used to contstruct the state variables and the stator resistance. The diagram 
of the SMO is shown in Figure 2. 
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Figure 2. Principle of the sliding mode observer 
 
 

The mathematical model of the observed stator current is presented as:  
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The matimatical model of the observed stator flux is given by the following system:  
 

13 1 3 2

4 1 4 2 2

1
0

0

0 1
0

S S SS SS

S S S

S S

S

LR

R

L

i v IA A
A Av I

i

  















 
                                                     
 

 (9)          

 
Where: 

1 1 1 2

2 1 2 2

A A
A A

 
 
 

, 3 1 3 2

4 1 4 2

A A
A A

 
 
 

 and 1 1

22

( )

( )
S

S

s ig n e S

s ig n e S
I
I

   
       

: are the matrixes of gains of the observed 

stator current, matrix of gains of the observed stator flux, and the sign vector of the sliding mode surface  
respectively.  
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3.1. Determining of the SMO Characteristics  

The sliding surface is based on the error between the real stator current si   and si  , and the observed 

stator current si 


and si 


 as follows:     
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Where 21  and  are two positive constants, which are determined by applying the stability conditions 

defined by the Lyapunov approach. 
The gain matrix of the stator flux is as follows: 
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Where 21 qandq  are two positive constants. 

The stability of the SMO depends on its convergence towards its sliding surface. To study the 
stability of this observer the following Lyapunov function is used: 
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Where   is a positive constant with a low value. 
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3.2. Mechanism of Adaptation of the Stator Resistance 
During operation the stator résistance vary, due to the temperature and the low speed operation. To 

online estimate of the stator resistance another term added to the lyapunov fuction. 
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To satisfy the condition of the Equation (17), the estimated stator resistance can be expressed as 

follow:  
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With k is a positive constant. 
 
 
4. USE OF XILINX SYSTEM GENERATOR (XSG) IN THE CONTROLLER DESIGN 
4.1. Description of Xilinx System Generator 

Xilinx System Generator (XSG) is a modeling tool developed by Xilinx for the design of 
implemented systems on FPGA. It has a library of varied blocks, which can be automatically compiled into 
an FPGA [22]. In this work, Xilinx System Generator (XSG) is used to implement the architecture of the 
Direct Torque Control of induction Motor with sliding mode observer on FPGA. In the first step, we begin by 
implementing of the proposed architectures using the XSG blocks available on the Simulink library.  Once 
the Design of the system is completed and gives the desired simulation results, the VHDL code can be 
generated by the XSG tool [23]. The design flow of the Xilinx System Generator is given by figure 3. After 
generation of VHDL code and the synthesis, we can generate the bitstream file. Then we can move this 
configuration file to program the FPGA [24]. 

 
 

 
 
 
 
 

Xilinx System Generator Design Gereration of VHDL Code 

 

 

Synthesis (Bitsteam) 
1111110000011111000111 
1111111100011111111000 
0011010111000011100000 
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Figure 3. Configuring an FPGA 

 
 

4.2. Design of the Sliding Mode Observer using XSG 
4.2.1. Design of the Currents Observed 

The Design of the direct component of the observed stator current vector introduced into the 
equation system (8) given by Figure 4. 
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Figure 4. Design of the Component Si


from the XSG 
 
 

4.2.2. Design of Sliding Surface, gain Matrix and Sign Function 
The sliding surface, the saturation function and the gain matrix are given in equations (10), (11), 

(12) and (15), are illustrated using XSG as shown in Figure 5. 
 
 

 
(a) 

 
(b) 

 
Figure 5. Design of sliding surface, gain matrix and sign function from the XSG 

 
 

4.3. Simulation Results using Xilinx System Generator and Discussions     
The structure of the direct torque control with the adaptative sliding mode observer of an induction 

motor is shown in Figure 6. 
 

 
 
 
 
 
 

 

Inverter 

E

   Switching Table 

 cba SSS  

 

 

ref  

Tref 
+ 

- 

+ 

sabci  

Sliding Mode 
Observer 

       PI 
r  

S  

Te 
abc 

  

Si  

  

N

ref  

SV  
abc 

  

- 

SR


 

E

 
 

Figure 6. Schematic of a conventional DTC with an adaptative sliding mode observer 
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4.3.1. The Stator Resistance is Constant (Rs=5.717Ω) 
The simulation of the conventional DTC with sliding mode observer is achieved using the XSG. The 

speed and flux references used in the simulation results are 150rad/s and 0.91wb respectively. The 
electromagnetic torque reference presents the output of PI controller of speed. At time t = 0.5sec a load 
torque of 10 Nm is applied. 
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Figure 8(b): Variation of the observed and real stator 

current Si 
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4.3.2. The Stator Resistance Varies from 100% (Rs=2*5.717=11.434Ω) 
The simulation of the conventional DTC with an open loop estimator and the conventional DTC 

with a sliding mode observer is achieved using the XSG at a low speed. The rotor speed and stator flux 
references used in the simulation results are 31.4 rad/s and 0.91 wb, respectively. At time t = 0.2sec a load 
torque of 10 Nm is applied. At t = 0.4sec the stator resistance increases by 100%. 

 
 

 
(a) An open loop estimator 

 
(b) A sliding mode observer 
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(a) An open loop estimator 

 
(b) With a sliding mode observer 

 
Figure 10. Evolution of the stator flux for DTC with 

 
                         

 
(a) without adjustment of the stator resistance 

variation 
 

 
(b) with adjustment of the stator resistance variation 

 

Figure 11. Evolution of the stator flux trajectories 
 
 

 
(a) An open loop estimator 

 
(b) With a Sliding Mode Observer 

 
Figure 12. Variation of electromagnetic torque for DTC with 

 
                              

The simulation results of the direct torque control with sliding Mode Observer given by Figure 7 and 
8 show that the real and the estimated variables are similar. In Figure 7(b) and 7(c) it can be seen that the 
stator flux and the electromagnetic torque are characterized by high ripples due to the use of the hysteresis 
comparator. 

Figure 9 show the sensitivity of the Direct Torque Control of an Induction Motor.  In Figure 9(a) we 
can see at t=0.4sec that the stator resistance increases 2 times the nominal stator resistance due to 
temperature, it can be seen that in the case of the DTC with an open loop estimator, the stator resistance used 
in the DTC kept constant. By contrast, in Figure 9(b) the observed stator resistance converges rapidly to the 
nominal value, this is due to the on line adaptation of the stator resistance by the sliding mode observer. The 
simulation results demonstrates the robustness of the Sliding Mode Observer against the abruptly variation of 
the machine parametres. 

In Figure 10(a), at t = 0.4sec the real stator flux is affected by de variation of the stator resistance, it 
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the Figure 10(b), the static error gradually vanishes due to the presence of the adaptive online mechanism of 
the stator resistance using the Sliding Mode Observer. 

In Figure 11(a), we can notice that the stator flux trajectories increase due to the variation of the 
stator resistance at t=0.4sec. By contrast, in Figure 11(b) the stator flux trajectory is kept constant due to the 
presence of the adaptive online mechanism of the stator resistance using the Sliding Mode Observer. 

In Figure 12(a), at t = 0.4sec the electromagnetic torque increases, and the error between the 
electromagnetic torque and the load torque remains constant. However, in Figure 12(b), for the sliding mode 
observer; the electromagnetic torque is kept constant. 

 
4.4. FPGA Implementation Results of the Proposed Approach and Discussions     

Once the simulation is completed and gives the desired results, we can generate the VHDL code and 
synthesized the hardware block. The implementation results are given by Figure 13 and Table 2.  
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Figure 13(a). RTL schematic of the conventional 
DTC with a sliding mode observer from Xilinx ISE 

Figure 13(b). Timing Diagram for the Imlementation 
on (a): Microcontroller, (b): Digital Signal Processor 
(DSP), (c): Field Programmable Gate Array (FPGA) 

 
 

Table 2. Resources Utilisation for the DTC with SMO 
Resourses Used resources Available resources  

Number of bonded I/O 68 640 

Number of  Slice LUTs 2087 44800 

Number of Slices Registers 478 44800 

Number of DSP48Es 8 128 

Execution time: exT = 0.94 µs 

 
 
The Table 2 shows the implementation results in term of the used resources and the execution time 

of the Direct Torque Control with SMO using the FPGA Virtex-5 Device. The RTL schematic of the CDTC 
with SMO is given by Figure 13(a). The Figure 13(b), shows the performance of computing time for the 
hardware implementation on FPGA compared to software solutions (Microcontroller, Digital Signal 
Processor). TADC 

and Tex are the analogue to digital conversion time and the execution time respectively.  
In this work the execution time equal to 0.94 µs. But in papers [25] and [26], the sampling time 

equal to 100 µs using the dSPACE 1104 (digital signal processing and control engineering). In paper [27], 
the sampling time equal to 500 µs. It can be seen that the execution time is too important relative to the 
FPGA due to the sequential processing of the dSPACE.     

 
 

5. CONCLUSION 
In this paper, the digital implementation of the Direct Torque Control with Sliding Mode Observer 

using the FPGA has been presented. The Sliding mode Observer has been proposed to improve the 
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performences of the Direct Torque Control of an Induction Motor. Using the Sliding Mode Observer consists 
to remplacing the open loop pure integration. The simulations results using Xilinx System Generator have 
shown that the proposed observation strategy has better performances than the open loop pure integration 
especially in term of variation of the stator resistance. The obtained design of the Direct Torque Control with 
Sliding Mode Observer from XSG can be translated automatically into a VHDL (VHSIC Hardware 
Description Language) from Xilinx Integrated Software Environment tool (ISE) and can be embedded into 
the Xilinx Virtex-V FPGA. 

 
 

Induction Machine Parameters 
Number of pairs of poles: 2 
Rated frequency: 50 Hz 
Rated voltage :220/380 V 
Stator resistance :5,717 Ω 

Rotor resistance: 4,282 Ω 
Stator inductance :464mH 
Rotor inductance :464mH 
 

Mutual inductance :441,7mH 
Moment of inertia :0.0049 kg.m² 
Viscous friction coefficient: 
0.0029kg.mˆ2/s 
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