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 Torque calculation process is one of the major concerns for controlling 
induction motors in industry, which requires very accurate state estimation of 
unmeasurable variables of nonlinear models. This can be solved if the 
variables used for torque calculation is accurately estimated.  This paper 
presents a torque calculation based on a voltage model represented with a 
low-pass filter (LPF), and an extended Kalman filter (EKF). The 
experimental results showed that the estimated torque at low speed based on 
EKF is more accurate in the expense of more complicated and larger 
computational time. 
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1. INTRODUCTION  

In the high-performance drives; field-oriented or direct torque control, accurate torque estimation is 
essential to avoid improper drive operation and to achieve a highly stable system. Most of the torque 
estimation techniques proposed so far are based on the voltage model (VM), or the current model (CM). 

The voltage model is the common name for a stator flux estimator used in sensorless induction 
motor drives since the rotor speed information is not required for the stator flux estimation, and the only 
essential parameter of the model is the stator resistance [1]. The VM is normally used in a high speed range, 
since at low speed, some problems arise. There are two well-known problems if a pure integrator is used: (1) 
drift and eventually saturation in the estimated flux due to the presence of the DC offset in the measured 
current [1]-[2], and (2) extreme sensitivity to stator resistance mismatch due to temperature increase, notably 
at low speed when the stator voltage is low [3]. To overcome (1), a low-pass filter (LPF) is normally used in 
place of a pure integrator. However, this method reduces the performance of the system drive because of the 
phase and magnitude errors due to the LPF, especially when frequencies are close to the cutoff frequency [4]. 
An attempt to solve this drawback, Karanayil et. al. [5] have proposed a small-time-constant cascaded LPFs 
to reduce the DC offset decay time. Comanescu and Longya [6] have addressed flux estimation  based on a 
phase locked loop (PLL) programmable LPF showing an improvement in the magnitude and phase of the 
estimated flux. 
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The current-model estimation, on the other hand, is normally applied at low frequency, and requires 
information on d and q stator current and rotor speed (or position) [2], [7]. In practice, accurate speed 
measurement is important for robust and precise control of IMs. However, the use of an incremental encoder 
to get the speed or position of the rotor is unattractive since it reduces the robustness and reliability of the 
drive, and increases hardware complexity and cost [8]. Thus, speed estimation techniques based on terminal 
variables that can replace mechanical speed sensors, have received increasing attention in recent decades. It 
is well-known that even though the use of CM has managed to remove the sensitivity to the stator resistor 
variation at low speed, on the other hand, it introduced parameter-sensitivity due to the rotor parameter 
variations, especially at high speed region. To address this problem, various methods have been proposed. 
For instance, Salmasi and Najafabadi [9] have proposed an adaptive observer which is capable of concurrent 
estimation of stator currents and rotor fluxes with online adaptation of rotor and stator resistances. Toliyat et 
al. [10] have developed artificial neural networks (ANNs) in closed loop observer for estimating rotor 
resistance and mutual inductance. There is also a stochastic approach that uses extended Kalman filter (EKF) 
in estimating the variables of an induction motor (IM), such as speed, torque, and flux [3]. Using EKF-based 
observer, it is possible to estimate the unknown parameters of IM, taking into account the parameter 
variations and measurement noises, in a relatively short time interval [11]-[16]. 

This paper investigates the real time calculation of torque using the estimated state variables based 
on the LPF filter and EKF and then compares them with simulated torques. In this way, it will be shown 
which technique is closer to simulation. The paper is organized in five sections. The following section 
presents the EKF-based torque calculator. Section 3 deals with the low pass filter, which represents the 
voltage model. Simulation and experimental results are presented in Sections 4. Finally, section 5 concludes 
the work. 
 
 
2. EXTENTDED KALMAN FILTER ALGORITHM 

In this study, EKF is used to concurrently estimate current, rotor flux, and rotor speed for speed 
sensorless control of IMs. However, the precise estimation of these state variables is very much reliant on 
how well the filter matrices are selected over a wide speed range [17]. The extended model to be used in the 
development of the EKF algorithm can be written in the following general form (as referred to the stator 
stationary frame. 

 
)())(),(()( twtutxftx iiii   

      (1) 

)()())(())(),(( tButxtxAtutxf iiiii        (2) 

)()()())(()( tvtButxtxHtY iiii        (3) 
 

There i = 1, 2, extended state vector xi is representing the estimated states, fi is the nonlinear 
function of the states and inputs, Ai is the system matrix, u is the control-input vector, B is the input matrix, wi 
is the process noise, H is the measurement matrix, and vi is the measurement noise. The general form of IM 
can be represented by (4) and (5). 
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Where isd and isq are the d and q components of stator current, Ψrd and Ψrq are d-q rotor flux 

components, ωr is the rotor electric angular speed in rad/s, vsd and vsq are the stator voltage components, Ls, 
Lrand Lm are the stator, rotor and mutual inductances respectively, Rs is the stator resistance, and Rr is the 
rotor resistance.  

In this section, the EKF algorithm used in the IM model will be derived using the extended model in 
(4) and (5). For nonlinear problems, such as the one in consideration, the KF method is not strictly 
applicable, since linearity plays an important role in its derivation and performance as an optimal filter. The 
EKF technique attempts to overcome this difficulty by using a linearized approximation, where the 
linearization is performed about the current state estimate. This process requires the discretization of (4) and 
(5) as follows: 

 
)())(),(()1( kwkukxfkx iiii 

        (6) 
 

)()())(())(),(( kBukxkxAkukxf iiiii         (7) 
 

)()()())(()( kvkBukxkxHkY iiii         (8) 
 

The linearization of (7) is performed around the current estimated state vector ix̂  given as follows.  
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The resulting EKF algorithm can be presented with the following recursive relations: 
 

QkFkPkFkP  1)()()()(         (10) 
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)())1(()1( kPHkKIkP          (13) 
 
In (10)-(13)Q is the covariance matrix of the system noise, namely, model error, R is the covariance 

matrix of the output noise, namely, measurement noise, and P are the covariance matrix of state estimation 
error. The algorithm involves two main stages: prediction and filtering. In the prediction stage, the next 

predicted states )(ˆ f  and predicted state-error covariance matrices, )(ˆ P are processed, while in the filtering 

stage, the next estimated states )1(ˆ kx obtained as the sum of the next predicted states and the correction 

term [second term in (12)], are calculated. The structure of the EKF algorithm is shown in Figure 1. 
The electromagnetic torque based on EKF is expressed based on the selected state variables which 

are the stator current and rotor fluxr: 
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The electromagnetic torque based on EKF is expressed based on the selected state variables which 
are the stator current and rotor flux. 
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3. VOLTAGE-MODEL-BASED TORQUE ESTIMATOR 
The stator flux estimation based on the voltage model is derived from the stator voltage equation 

given by: 
 

.
dt

d
iRv s
sss


  

 
The stator flux, therefore, can be written as: 
 

   .dtRiv ssss
         (15) 

 
Under sinusoidal steady-state condition, this reduces to: 
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Figure 1. Structure of extended Kalman filter 

 
 

To avoid the integration drift problem due to the dc offset or measurement noise, an LP filter is 
normally used in place of the pure integrator. With an LP filter, (16) becomes 
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where c is the cutoff frequency of the LP filter in radians per second and s  is the estimated stator 

flux which is obviously not equal to s  of  (16).  

Choosing a cutoff frequency which is closer to the operating frequency will reduce the dc offset in 
the estimated stator flux, which on the other hand will introduce phase and magnitude errors. 

The electromagnetic torque equation for LPF is calculated based on the estimated stator flux and 
measured stator current: 
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4. SIMULATION AND EXPERIMENTAL RESULTS 
In order to study the performance and feasibility of the estimators, experimental results obtained 

from both the EKF- and LPF-based estimators are compared with the results obtained from simulations using 
Matlab/SIMULINK. In both simulations and experiments, the induction motor is run using constant Volts per 
Hertz (V/Hz) control scheme. In the experiment, the torque is calculated using the LPF and EKF-based 
estimators. The calculated torque from the experiment is then compared with the ideal or ‘actual’ torque 
directly obtained from the induction motor SIMULINK block in the simulation. The parameters of the 
induction motor used in the simulation and experiment are as shown in Table 1. 

The experimental set-up consists of an insulated-gate bipolar transistor inverter, a dSPACE 1104 
controller card, XILINX field programmable gate array (FPGA) and a 1.5-kW 4-pole squirrel-cage induction 
motor. An incremental encoder with 1024 ppr is used to measure the rotor speed.For safety reason, the DC 
voltage is limited to 100 V, which means that the based speed is reduced to 28 rad/s. The main tasks of the 
dSPACE are to produce the PWM control signals using the constant V/Hz scheme and, more importantly, to 
estimate the torque using LPF and EKF algorithms. The FPGA device is used for blanking time generation. 
The sampling period of the constant V/Hz scheme, including the state estimators, is 280 μs. 

The initial values of the P, R and Q in the EKF algorithm are found by trial-and-error to achieve a 
rapid initial convergence as well as the desired transient- and steady-state performance. Thus, the initial 
values for EKF scheme – P= diag[1 1 1 1 1],  Q = diag[10-10 10-10 10-12 10-12 10-3], R=diag[10-2 10-2 ].  As 
for LPF, the estimated stator flux is based on the cutoff frequency set to 5 rad/s. 

 
 

 
 

Figure 2. Schematic representation of the experimental setup 
 
 

Table 1. Induction Motor Parameters 
Rs 

[Ω] 
Rr 

[Ω] 
Ls 

[H] 
Lr 

[H] 
Lm 

[H] 
JL 

[Kg. m2] 
F

3 4.1 0.3419 0.3513 0.324 0.00952 4 

 
 

The constant V/Hz drive, both in simulation and experiment, is run in an open loop mode where a 
step change in the speed reference from 0 to 28 rad/s is applied at t=2.8s. 

 
 

 
 

Figure 3.  Simulation results: d-q stator current, torque, and speed 
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Figure 4.  Experimental results: d-q stator voltage, d-q stator current, and measured speed 

 
 

Figure 3 shows the simulation results, under ideal condition, of the d-q stator currents, simulated 
torque and rotor speed. Figure 4 shows the results obtained from experiment for the measured d-q stator 
currents and voltages, and speed, under the same condition. The performance of the EKF algorithm is 
evaluated experimentally through the estimated speed and the calculated torques as shown in Figure 5. In 
order to further examine the differences between the simulated and calculated torque based on EKF 
estimator, the waveforms are zoomed and shown Figure 8(a), where the differences (error) are also plotted. 
The EKF not only can be used to estimate the torque, but also can be utilized to estimate the speed; the 
estimated speed and measured speed obtained from experiment is shown in Figure 6. It can be seen that 
estimated and measured speeds almost coincided except at start-up, where significant error can be observed 
due to the lack of flux rotation at zero speed.  

 

 
 

Figure 5.  Experimental results: d-q rotor flux, estimated torque, and estimated speed for EKF 
 
 

The experimental results of the d-q axes of the estimated stator flux, and the magnitude of the 
calculated torque with the LPF cutoff frequency set to 5 rad/s is shown in Figure 7. The differences between 
the calculated torque based on LPF voltage model and the simulated torque can be clearly seen in Figure 
8(b), where the waveforms are zoomed. Examining Figure 8(a) and 8(b), one can clearly see the torque 
estimation using LPF is poor because of the uncertainties of parameters, nonlinearty of the inverters, 
measurement noise of current. For these reasons, the EKF observer is used as it can take into account all of 
these uncertainties and noises. This can be proved by inspected the narrower error band of the EKF torque.  
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Figure 6.  Experimental results: Measured and estimated speed obtained from EKF estimator 
 

 
 

Figure 7.  Experimental results: d-q stator flux and estimated torque based on voltage model (LPF) 
 

 
(a) 

 
(b) 

 
Figure 8. Comparison between the torques obtained from the simulation and experiment for (a) EKF, (b) LPF 
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4. CONCLUSION 
In this paper, a comparison of state estimations for torque calculation based on EKF and LPF filters 

applied for an induction motor control has been performed. The performances of the EKF and LPF schemes 
under the same conditions are experimentally evaluated by comparing them with the results obtained from 
the simulation. When comparing both results, the EKF-based state estimation shows much better accuracy 
than the LPF-based state estimation in calculating the torque. The EKF-based is also capable of estimating 
the speed under transient and steady state conditions. The drawback of EKF-based estimation is the large 
sampling time due to the complex mathematical equations involved. 
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