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 This paper presents a study of the Doubly Fed Induction Machine (DFIM) 

powered by two matrix converters; one connected to the stator windings  

and the other connected to the rotor windings. First, the mathematical model 

of DFIM and those of the matrix converters are developed. Then, the vector 

control technique is applied to the DFIM. Fuzzy logic is used in order  

to automatically adjust the parameters of the PI controller. The performance 

of this structure under different operating conditions is studied. Particular 

interest is given to the robustness of the fuzzy logic based control.  

The operation of the DFIM under overload conditions is also examined.  

Simulation results obtained in MATLAB/Simulink environment 

are presented and discussed. 
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1. INTRODUCTION 

Recent years have seen a rapidly growing interest in the doubly fed induction machine (DFIM) due 

to the numerous advantages offered by this machine compared to other electrical machines. One of these 

advantages is the accessibility of its rotor, and thus the possibility to control this machine as well from the 

stator side than from the rotor side and the possibility of dispatching the active power between stator  

and rotor sides. Another benefit consists in the possibility of under sizing by one third the rotor side converter 

while taking advantage of the full power of the machine [1]. One can also quote that under certain conditions 

the active power of DFIM can be doubled. All these benefits and many others have led to wide use of this 

machine. For example, nearly 50% of the wind turbines installed today are equipped with doubly fed 

induction generators (DFIG) [2]-[4]. This is because the doubly fed induction generator can be operated over 

a wide range of wind speed leading to continuously extracting the maximum possible power [5], [6]. Besides, 

the DFIM is also used in a multitude of variable speed drive systems [7]. In this operating mode, the DFIM 

presents many advantages as well. 

In the present paper, the DFIM powered by two matrix converters is studied (Figure 1). Matrix 

converters are chosen instead of the conventional VSI inverters because of their attractive benefits [8]-[11]. 

These benefits include: low harmonic distortion of the input currents (compared to conventional VSI), 

reduced size/weight, higher reliability and extended life span (due to DC bus elimination). In addition, the 

use of a matrix converter on the rotor side is more advantageous over a conventional voltage source 

inverter, in case of voltage sags. The speed and torque control is ensured by using the vector control 

technique along with an adaptive controller, namely, a fuzzy logic (FLC) based PI controller. The DFIM 
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powered by two matrix converters is studied here because we found that this subject as defined in the present 

paper is sparsely documented in the scientific literature. 

 

 

 
 

Figure 1. DFIM powered by two matrix converters 

 

 

This paper is organized as follows. In the subsequent section the doubly fed induction machine 

model and the matrix converter model are set forth. The third section is devoted to the control of the DFIM, 

where the field oriented control technique, as well as the fuzzy logic based PI controller, are presented.  

The forth section presents and discusses the obtained results, with special focus on robustness test and on the 

operation of the DFIM beyond its nominal power. 

 

List of symbols 

        Direct and quadrature stator voltages 

        Direct and quadrature rotor voltages 

         Direct and quadrature stator currents 

        Direct and quadrature rotor currents 

        Direct and quadrature stator fluxes 

        Direct and quadrature rotor fluxes 

   Stator fluxes 

      Electromagnetic and load torque 

  Rotor speed 

      Stator and rotor pulsation 

      Stator and rotor angular position 

   Stator resistance 

   Rotor resistance 

   Stator inductance 

   Rotor  inductance 

   Mutual inductance 

  Number of pole pairs 

  Inertia 

  Friction factor 

 

 

2. DFIM MODELING  

2.1.   Induction Machine Model 

Assuming common simplifying assumptions, and applying Park transformation, the voltages 

equations of the induction machine expressed in the stator synchronous reference frame are given by [12]: 
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The stator and rotor flux linkages may be written as:   
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The mechanical equation  
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The electromagnetic torque is given by: 
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The model of the DFIM in state space form with the six state variables: stator and rotor currents, 

speed and angular position, is given by [12]. 
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2.2.   Matrix Converter Model 

The matrix converter shown in Figure 2 is introduced for the first time by L. Gjugyi and B. Pelly 

[13]. This is a 3-phase/3-phase direct converter. The three phase input is directly connected to the phase 

output using nine bidirectional switches. This converter can produce a three-phase output voltage  

with variable amplitude and frequency (output voltage amplitude limited to 86% of the input [14]). 

To control the matrix converter, we adopted the Scalar Alesina & Venturini technology.  

The principle of this technology is to synthesize the desired voltage three phase output from the input voltage 

for each switching period. In the same manner, the input currents are synthesized from the output currents.  

To establish the model of the matrix converter, we consider a balanced three phase input voltage     with the 
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input pulsation    and a balanced three phase output voltage    with the output pulsation    as described 

respectively in (8) and (9). 

 

 
 

Figure 2. Matrix converter 
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The input and output currents are given by: 
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The relationship between the output and the input voltages is defined by [15]:  

 
                          (12) 

 

Similarly, the relationship between the output and the input currents is defined as follows :   

 
        [     ]              (13) 

 
      is the conversion matrix which determines the state of the converter switches for each time period. 

It gives the nine duty cycles     of the nine switches of the matrix converter. 

 

 

3. DFIM CONTROL  

3.1.  Field Oriented Control 

Vector control technique is used in the present study in order to ensure independent regulation of the 

speed and torque. Vector control, also called field-oriented control, stems from decoupled flux-current  
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and torque-current control in AC drives. This in turns is similar to the principle of decoupled control of 

excitation and armature currents in DC machines [12]. 

In general, the FOC is used according to one of the following two ways. The one, known as indirect 

field oriented control (IFOC), proceeds by imposing a dynamic slip speed as derived from the equation of the 

rotor flux in order to ensure the orientation of the flux. The other way, known as direct field oriented control 

(DFOC), uses the measurement or estimation of the flux to get its magnitude and angle which is necessary 

for flux orientation. The indirect field oriented control is applied here for the control of the DFIM. In this 

case, the flux is not measured but defined by a preset value of its magnitude, and its angular position   .  

This angle is obtained from the stator pulsation   . The later is considered as the sum of the estimated rotor 

pulsation    and the measured rotor speed   (Figure 3). The stator flux orientation control used here consists 

in aligning the d-axis of the rotating reference frame to the stator flux space vector.  

 

 

 
 

Figure 3. Orientation of the d- axis along the stator flux 

 

 

By aligning the stator flux along the d- axis the components of the stator flux become: 

 

                 (14) 

 

    0          (15) 

 

And by imposing a unity power factor at the stator, which leads to:     0, the steady state equations 

governing the operation of the machine become as follows : 
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The final expression of the electromagnetic torque is: 

 

                                (18) 

 

The compensation terms are applied according to the method introduced by D. Lecoq [16] which 

requires the use of four corrective currents. In order to get a good decoupling between d- and q- axis 

quantities, this method defines the new converted voltages as follows: 
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From (17) the q- and d-axis stator currents may be expressed as: 
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Also, from (19) and (20), it can be deduced : 
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where       ,       ,        and        denote the compensation terms. The diagram in Figure 4 shows the 

current controller and the voltage compensator which are cascaded in order to provide the reference voltage. 

 

 

 
 

Figure 4. Current control diagram according to Lecocq method 

 

 

The flux weakening is defined by the following expression:  
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3.2. The Adaptive Controller 

In the present section the common PI controller and a fuzzy logic based PI controller are used 

 and compared. The latter, which results from the combination of a PI controller and the fuzzy logic 

technique, named here adaptive controller (Adaptive PI), takes advantages of the fuzzy logic technique to 

provide an automatic tuning of the PI controller. 



IJPEDS  ISSN: 2088-8694  

 

Self-Tuning Fuzzy Based PI Controller for DFIM Powered by Two Matrix Converters (Abdelhakim Alalei) 

671 

Due to their simplicity and low cost PI controllers are widely used in industrial applications. 

However, these simple analog controllers are linear and cannot control systems with varying parameters. 

Fuzzy logic (FLC) based controllers have non-linear structure with good performance and higher robustness 

in the control of non linear and varying parameters systems. In contrast, they have the drawback that they 

require a lot of information to account for the non-linearity when parameters change. Furthermore, if the 

number of FLC entries increase the size of the rules base increases [17]. 

The adaptive PI technique uses fuzzy logic to adjust the parameters of the PI controller (kp, ki) 

when the parameters of the controlled system change. This makes it adaptable for controlling nonlinear 

systems. The block diagram of this technique is illustrated in Figure 5.  

 

 

 
 

Figure 5. Principle of PI parameters tuning using fuzzy logic 

 

 

The parameters of the PI controller are taken normalized in the range [0, 1], by using the following linear 

transformations [17]: 
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Fuzzy logic controller inputs are: the error   and the error derivative   , the outputs are the 

normalized value of the proportional action   
  and the normalized value of the integral action   

 . The fuzzy 

sets of input variables are defined as follows: NB: Negative Big, NM: Negative Average, NS: Negative 

Small, Z: Zero, PS: Positive Small, PM: Positive Average and PB: Positive Big. The fuzzy sets of output 

variables are defined as follows: B: Big and S: Small. The membership functions for the inputs;   and    are 

defined in the range [-1, 1] (Figure 6) and the membership functions for the outputs are defined in the interval 

[0,1] (Figure 7). 

 

 

 
(a) 

 
(b) 

 

Figure 6. Membership functions: (a) for e, (b) for de 
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Figure 7. Membership function for   
 and   

  

 

 

The rules bases to calculate the parameters   
 and   

  are shown in Tables 1 and Table 2. 

 

 

Table 1. Rule base for the output    
  Table 2. Rule base for the output    

  
 

de 

e 
NB NM NS Z PS PM PB 

NB B B B B B B B 

NM S B B B B B B 

NS S S B B B S S 

Z S S S B S S S 

PS S S B B B S S 

PM S B B B B B S 

PB B B B B B B S 

  de  
e 

NB NM NS Z PS PM PB 

NB B B B B B B B 

NM B B S S S B B 

NS B B B S B B B 

Z B B B S B B B 

PS B B B S B B B 

PM B B S S S B B 

PB B B B B B B B 
 

 

 

Once the values of    
  and   

  are obtained, the new parameters of the PI controller (   and   ) are 

calculated by: 
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4. SIMULATION RESULTS AND DISCUSSIONS 
The used wound rotor induction machine has the following specifications. 

 

 

Table 3. Specifications of the induction machine 
Parameters  Values  

Nominal power 1.5 KW 

Nominal speed 1450 tr/min 
Number of pole pairs  2 - 

Inertia 0.01 kg   
Friction factor 0.0027 N.m.s 

Nominal stator voltage 220 V 
Nominal rotor voltage 130 V 

Nominal stator current 4.3 A 

Nominal rotor current 4.5 A 
Nominal stator frequency 50 Hz 

Nominal rotor frequency 50 Hz 

Stator resistance 1.75   
Rotor resistance 1.68   

Stator inductance 295 mH 

Rotor  inductance 104 mH 
Mutual inductance 165 mH 
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4.1. Speed Control 

The simulations were performed under Matlab / Simulink environment. The simulation results 

presented and discussed below are obtained from tests applied to the DFIM powered by two matrix 

converters under IFOC. The DFIM is operated in motor mode.  

The cycle of operation considered here is as follows: 

a. A no-load starting of the machine is made with speed set point of 100 rd/s, 

b. External disturbance is introduced by applying the rated load of  9 Nm, at t = 1s, 

c. The load is removed at t = 1.75s, 

d. The direction of rotation is reversed at t = 2.5s, 

e. Changeover to a low speed (2.5% of nominal speed) at t = 3.25s, 

f. The nominal load is applied at t = 4s. 

According to the results obtained in Figure 8, we see that the DFIM speed follows well the reference 

speed all through the operating cycle; at startup, during the application and removal of the load, but also in 

the case of speed reversal. It can also be noticed that the effect of inertia (speed overshoot) is much less in the 

case of adaptive PI compared to classic PI controller. Also, at very low speed, the DFIM was able to 

overcome the nominal torque while following a reference of 2.5% the nominal speed. Moreover, it should 

also be noted that this high dynamic performance is made possible also thanks to the used FOC technique 

which ensures a dynamic torque response and a good decoupling between flux and torque. As can be seen on 

Figure 8d, the flux is maintained at its desired value through all the different phases of the operating cycle. 

 

 
 

Figure 8. Simulation results of DFIM controlled by adaptive PI-FLC controller. (a) Speed, (b) Torque, 

(c) Stator currents, (d) Stator flux 

 

 

4.2. Operation beyond the Nominal Power 

In order to point out a very interesting and useful capability of the DFIM, another cycle of operation 

is considered as follows: 

a. A no-load starting of the machine is performed with speed set point of 157 rd/s (nominal speed), 

b. At time t=1s a load equal to twice the nominal load is applied 

c. From time t=2s to t=3s the machine is running at no-load 

d. At t=3s the speed is increased to twice the rated speed 



        ISSN: 2088-8694 

IJPEDS Vol. 7, No. 3, September 2016 :  665-676 

674 

e. The nominal load is applied at t=4s. 

f. The load is removed at t=5s. 
Figure 9 shows two types of overload operation of the DFIM. For instance, from time t=4s to t=5s 

the machine is driven at twice its rated speed while keeping the load torque at nominal value. Hence, in such 

situation, the DFIM is developing the double of its nominal power. This ability of the DFIM to overcome 

significant transient overloads is very useful in several industrial applications such as in mining and electric 

vehicle industries. 

 
Figure 9. Simulation results of DFIM operation at twice rated power. (a) Speed, (b) Torque 

 

 

4.3. Robustness Test 

The main objective of these tests is to verify the performance of the DFIM control with respect to 

variations of its parameters. Various tests were carried out by performing machine parametric variations 

and this up to 50% for stator and rotor resistors, and also up to 50% for the inertia. The tests were performed 

according to the following operating cycle: Starting at no load with a speed set point of 100rd/s at time t=0, 

then, variations in machine parameters are applied at time t=0.5s, and finally the speed is reversed and set to-

100rd/s at t=3s. The load torque is applied t=1s and then removed at t=2s. Observing the results shown in 

Figure 10, it is obvious that changes in machine parameters did not influence the proper functioning of the 

DFIM, which confirms the robustness of the control technique. 

 

 
 

Figure 10. Robustness test of the adaptive PI-FLC controller with respect to stator and rotor resistances  

and the inertia of the DFIM. (a) Speed, (b) Torque, (c) Stator currents, (d) Stator flux 
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5. CONCLUSION 

In this article we studied the DFIM associated with two matrix converters respectively connected to 

the stator and rotor windings. The obtained results show that the DFIM responds favorably to speed  

and torque demand. Due to the good decoupling provided by vector control technique, the flux and speed 

follow accurately their references. The simulation results show a remarkable behavior of the adaptive PI 

controller when compared to that of conventional PI. Also, it should be noted the high performance offered 

by the adaptive PI controller regarding the robustness. Finally, we simulated a very severe operation which 

consists to operate the DFIM beyond its rated power. In fact, the speed was doubled while keeping the torque 

at its nominal value. The DFIM has responded favorably to this request, and consequently was able to 

provide a power equal to twice its rated power. This can be very useful to overcome a significant transient 

overload. However, we must consider the overheating generated during this operation. 
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