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ABSTRACT

In order to deal with the boost converter non minimum phase property and to solve the Slid-
ing Mode Control (SMC) major problem (the chattering phenomenon), a new backstepping
Sliding Mode Controller is developed. In this paper, a comparative study between the pro-
posed controller and the (2-SMC)super twisting and the classical SMC is provided in order
to evaluate each controller. Simulations and experimental results show the effectiveness and
the robustness of the proposed controller with respect to load variation.
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1. INTRODUCTION
The boost converter is widely used in renewable energy area and in particular solar energy ([1, 2, 12, 15])

since it allows to maintain a desired output voltage despite the fluctuation of the input voltage produced by the renew-
able energy source. However, the output voltage, which is the variable to be regulated, is a non minimum phase output
(due to the boost converter inherent Right Half Plane-zero).
Many approaches and techniques, such as, the Parallel Damped Passivity Based Controller [17], the Backstepping
Controller (BC) [5] and the Sliding Mode Controller (SMC) [10], have been proposed to deal with the non-minimum
phase behavior. They provide a fast transient response and cope with the boost converter parameter variations.
Previous work by the authors, [10], show that the Backstepping Controller and the Parallel Damped Passivity Based
Controller have a good tracking and robustness performance but in the same time fail to solve the boost non minimum
phase problem. Moreover, despite the well admitted effectiveness and robustness of SMC strategies, [18], the chatter-
ing phenomenon remains the major drawback of the approach, [18].
Many solutions have been proposed to overcome the chattering problem and to mitigate the non minimum phase boost
problem. For instance [7] proposes a new sliding surface giving rise to an integral SMC or a double integral SMC.
The obtained controller reduces the chattering phenomenon but fails to suppress it.
The second order SMC (2-SMC) has been proved to be a good solution for the chattering problem. Indeed, for differ-
ent variant of the 2-SMC, that is, with the twisting algorithm, with the terminal algorithm or with the quasi continuous
algorithm, the chattering is eliminated.
Nowadays, the (2-SMC) with super-twisting algorithm is preferable since it reduces the chattering phenomenon in
many applications. Moreover, in the case of a boost converter, it is able to mitigate the non minimum phase behavior
[4]. In addition, combining the SMC with others approaches gave rise to many new approaches such as a PI controller
in [16], a fuzzy controller in [19] and a backstepping controller in [14].
Through the backstepping Sliding Mode Controller (BSMC), one can take the advantages of both methods by improv-
ing the Backstepping robustness and eliminating the Sliding Mode Controller chattering phenomenon [6].
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In this paper, a comparative study between the super twisting (2-SMC) and the backstepping SMC with the classical
SMC is provided in order to show the advantages of each controller especially in terms of chattering phenomenon
reduction and non minimum phase behavior mitigation.
The paper is organized as follows: Section 2 presents the modeling of the boost converter. In section 3, the proposed
backstepping Sliding Mode Controller is presented.Section 4 is devoted to recall the classical SMC and the (2-SMC)
with super twisting controller. The effectiveness and the robustness of the proposed approaches are verified through
simulation in section 5 and experimentally verified in section 6. Some conclusions end the paper in section 7.

2. BOOST CONVERTER MODELLING
The ideal boost converter given by Figure 1 contains a MOSFET (an active switch), a diode, an inductor L, a

capacitor C, a load resistanceR. We notice that E is the input voltage, Vs is the output voltage and is the duty cycle:

Figure 1. Boost converter

The average Boost converter model is given by the following equations:

L
dx1(t)

dt
= −(1− u(t))x2(t) + E

C
dx2(t)

dt
= (1− u(t))x1(t)− x2(t)

R
(1)

where: x1 is the input current average value, x2 is the output voltage average value and u is the duty ratio.
Let X1r be the input current reference value (constant), then the equilibrium values of x1∞ = X1r, x2∞ =

X2r and u∞ = U (0 < U < 1) satisfy the following equations:

X1r =
E

R(1− U)2
(2)

X2r =
E

1− U
(3)

The relation between X1r and X2r is given by:

X1r =
X2

2r

RE
(4)

3. THE PROPOSED BACKSTEPPING SLIDING MODE CONTROLLER
The backstepping sliding mode controller is composed of the backstepping control law uBC and a discontin-

uous sliding mode control law udis.

3.1. The backstepping control law

The backstepping design control is a recursive Methodology. It Involves a systematic building of both feed-
back control law and the associate Lyapunov function ([5, 9]).
The backstepping controller will be designed in two steps since the boost converter is a second order system.
The first step:
The output error is defined by:

e1 = x1 −X1r (5)
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The output error derivative is:

ė1 = ẋ1 = − (1− u)

L
(1− u)x2 +

E

L
(6)

We will suppose that x2 is defined as follows:

x2 =
L

(1− u)
(c1e1 +

1

L
E) (7)

Thus: ė1 = −c1e1 and we deduce that x2

L behaves as a control variable of e1 and its virtual expression is given by:

α1 =
1

(1− u)
(c1e1 +

1

L
E) (8)

The second step
Considering that e2 = x2

L − α1 the error between the real and the virtual controllers. The derivative of e1 can be
rewritten as follows:

ė1 = −(1− u)(e2 + α1) +
E

L
= −(1− u)e2 − c1e1 (9)

In order to know the behavior of e2, we calculate its derivative:

ė2 =
ẋ2
L
− α̇1 (10)

α̇1 =
u̇

(1− u)2
(c1e1 +

E

L
) +

c1
(1− u)

ė1 =
u̇

(1− u)2
α− c1

(1− u)
((1− u)e2 + c1e1) (11)

Then, the derivative of e2 is:

ė2 = (1− u(t))
x1(t)

LC
− x2(t)

RLC
+

u̇

(1− u)2
α+

c1
(1− u)

((1− u)e2 + c1e1) (12)

We will consider the following Lyapunov function:

V =
1

2
e21 +

1

2
e22 (13)

The derivative of V is given by:

V̇ = e1ė1 + e2ė2 = −c1e21 + e2(ė2 − (1− u)e1) (14)

Assuming that −c2e2 = ė2 − (1− u)e1, we deduce that

V̇ = −c1e21 − c2e22. (15)

The control law must satisfy the following condition:

(1− u)2e1 − c2(1− u)e2 = − 1

RLC
(1− u)x2 +

1

LC
x1(1− u)2

− u̇

(1− u)
α1 + c1((1− u)e2 + c1e1) (16)

which yields

u̇ = (1− u)2(c1e1 +
E

L
)−1(((1− u)2 − c21)e1 + (c1 + c2)(1− u)e2

+
1

RLC
(1− u)x2 −

1

LC
x1(1− u)2). (17)
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3.2. The discontinuous sliding mode control law

The sliding surface is given by:

S = K1e1 +K2e2. (18)

The discontinuous sliding mode control law can be written as follows [13]:

udis = −k S

| S | +δ
. (19)

3.3. The backstepping sliding mode control law

The proposed backstepping sliding mode control law is given by:

u = uBC + udis (20)

u̇BC = (1− u)2(c1e1 +
E

L
)−1(((1− u)2 − c21)e1 + (c1 + c2)(1− u)e2

+
1

RLC
(1− u)x2 −

1

LC
x1(1− u)2). (21)

4. RECALL OF THE CLASSICAL SMC AND THE SECOND ORDER SMC WITH SUPER TWISTING
4.1. The classical sliding mode controller

In [8], a classical sliding mode controller is given as follows:

u =

{
1 for S < 0,
0 for S > 0.

The sliding surface is:

S = K1(x1 −X1d) +K2(x2 −X2r) (22)

with: X1d = X2rx2

RE : the input current reference value.
The sliding surface can be rewritten as follows:

S = K1(x1 −X1r) +K ′2(x2 −X2r) = K1e1 +K ′2e2 (23)

with:

K ′2 = K2 −
K1X2r

RE
. (24)

The existence and stability conditions are verified if

K ′2
K1

<
RCE

X2rL

where K1 and K2 are positive scalars [8].

4.2. Second order sliding mode controller with super twisting

The super twisting control algorithm is given by [11]:

u = u1 + u2 (25)
u̇1 = −βsign(S) (26)
u2 = −α |S|ρ sign(S) (27)

with:α > 0, β > 0 and ρ = 0.5
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5. SIMULATION RESULTS
In order to test the effectiveness and the robustness of each controller, the average model of the DC-DC con-

verter has been simulated using the Matab/Simulink software.
The simulations were performed with the following parameter’s values and the initial values are:
R = 30Ω, L = 10mH, C = 100F, E = 15V, Te = 50s, X2r = 30V
x1(0) = 0.6A, x2(0) = 16V, u(0) = 0.1.
CSMC parameters: K1 = 0.01, K2 = 0.5
(2-SMC)ST parameters: K1 = 0.01, K2 = 5 β = 0.1, α = 0.1
BSMC parameters: c1 = 700, c2 = 7000, K1 = 50, K2 = 1, k = 0.01, δ = 0.5.

5.1. Reference variation:

In this experiment, the current reference variation switches from 2A to 3A at 0.05s.
The desired values of the output voltage and the duty ratio are given by Table 1.

Table 1. Desired values of the output voltage and the duty ratio

CSMC (2-SMC)ST BSMC
X1r(A) 2 3
X2r(V ) 30 36.74
U 0.5 0.6
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Figure 2. Simulation results with reference variation
.

Table 2. Performances of the CSMC, (2-SMC)ST and the BSMC.

Rise time ±5%(ms) 0.7157 3.2 2.9
Settling time (ms) 2.05 2.35 3.5
Overshoot (A) 26.5254 6.7929 0
Peak (A) 2.4571 2.0769 2
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We notice from Figure 2, that the input current and the output voltage tracking are effective in all cases.
However, we can say from Table 2 that the BSMC approach outperforms the other approaches since it reaches its
desired value with no overshoot and no peak value and with a relative small settling time. The zoomed parts in Figure
2 show that the chattering phenomenon presented in the case of the CSMC is reduced by the (2-SMC)ST and totally
eliminated by the BSMC and non-minimum phase behavior seen plainly in the CSMC output voltage is mitigated by
the BSMC and well improved by the (2-SMC)ST.

5.2. Load resistor variation

In order to evaluate the robustness of the proposed controllers, a load resistor variation is applied from R =
30Ω to R = 15Ω at t = 0.5s in the case of CSMC and BSMC and at t = 2s in the case of (2-SMC)ST (in order to see
clearly the response).
The desired values of the output voltage and the duty ratio are given by Table 3.

Table 3. Desired values of the output voltage and the duty ratio.

CSMC (2-SMC)ST BSMC
R(Ω) 30 15
X1r(A) 2 2
X2r(V ) 30 21.21
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Figure 3. Simulation results with load resistor variation
.

It can be seen from Figure 3 that all controllers are robust. However, the BSMC behavior against a load variation is
better than the CSMC (elimination of chattering) and faster than the (2-SMC)ST. This is explained by the fact that the
(2-SMC)ST control law contains an integral term which slow down the system.

6. EXPERIMENTAL RESULTS
These controllers were experimentally evaluated on the real system available in the LIAS laboratory.
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6.1. Experiments in open loop

Experiments in open loop presented by Figure 4 show a difference between the theoretical output voltage
value and the experimental output voltage value. The same phenomenon is noticed for the input current. The neglected
internal resistor of the inductor and the MOSFET in the on-state and the threshold voltage with the dynamic resistance
of the diode could be a source of these errors [3].
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Figure 4. Experimental curves in open loop.

6.2. Experiments in closed loop

The controllers implementation was carried out using the DSP-based system DS1104 developed by DSpace.
Reference Variation:

(a) CSMC (b) (2-SMC)ST (c) BSMC

Figure 5. Experimental results with reference variation: 1- The input current iL(t); 2- The output voltage Vs(t); 3-
The duty cycle u(t); 4- The sliding surface.

.

Figure 5 shows that the experimental results are similar to the simulation results and the state error is justified by
neglecting the internal resistors of the inductance, the MOSFET and the diode as well as the diode threshold voltage
and the switching transient behavior for semiconductors as shown in Figure 4.
The BSMC and the (2-SMC)ST are able to eliminate the chattering phenomenon which appears in the case of CSMC
and which is undesirable for power converters. However, the BSMC is faster than the (2-SMC)ST. Load resistor
Variation:

A new BSMC applied to a Boost Converter (Yosra Massaoudi)
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(a) CSMC (b) (2-SMC)ST (c) BSMC

Figure 6. Experimental results with load resistor variation: 1- The input current iL(t); 2- The output voltage Vs(t); 3-
The duty cycle u(t); 4- The sliding surface.

.

It is observable from Figure 6 that the BSMC is more robust than the CSMC and the (2-SMC)ST and it is insensitive
to a load resistor variation. However, the (2-SMC)ST takes its time to reach the desired value under a load resistor
variation. A similar behavior is reported in [20].

7. CONCLUSION
In this paper, we developed a new backstepping sliding mode controller (BSMC applied to a DC-DC Boost

converter. In order to verify the effectiveness and the robustness of this controller, a comparative study with the
classical Sliding Mode Controller and the Super twisting Sliding Mode Controller (2-SMC)ST) was presented. We
conclude that the chattering phenomenon which is the major problem of classical SMC is reduced by the (2-SMC)ST
and totally eliminated by the BSMC. However, the non minimum phase behavior is mitigated by the BSMC and well
improved by the (2-SMC)ST.
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