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 The speed estimation technique of induction machines has become a  

non-trivial task. For estimating the speed of an induction motor precisely  

and accurately an optimum state estimator is necessary. This paper deals with 

the performance analysis of induction motor drives using a recursive, 

optimum state estimator. This technique uses a full order state space 

Extended Kalman Filter (EKF) model where the rotor flux, rotor speed and 

stator currents are estimated. A major challenge with induction motor occurs 

at very low and at near zero speed. In such cases, information about the rotor 

parameters with respect to stator side become unobservable while using the 

synchronously rotating reference frame. To overcome this lost coupling 

effect, EKF observer linearizes the non-linear parameter in every sampling 

period and estimates the states and machine parameters simultaneously. The 

proposed algorithm is tuned to obtain least error in estimated speed. Any 

error found is further optimized using a non-linear fuzzy controller to obtain 

improved performance of the drive. 
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1. INTRODUCTION 

Induction machines are more rugged, compact, cheap and reliable when compared to other 

machines. Vector controlled induction motor drives out performs other drives because of high transient 

capability, increased speed range and lower rotor inertia. Sensorless control methods are making excellent in 

the most recent years because of their low cost and greater reliability without mounting problems [1]. Speed 

estimation methods are being used that avoid the speed measurement setup thereby reducing the hardware 

complexity and maintenance requirements. There are several speed estimation techniques discussed in the 

literature that are used to estimate the speed using different machine parameters. 

A recent effort on the research front is on sensorless speed estimation that has been done from the 

measurement of stator voltages, phase currents and frequency using several techniques and algorithms. 

Techniques for obtaining speed information of an induction motor are based on slip frequency calculation 

[2], Model Reference Adaptive System (MRAS) [3] is an Adaptive Observer (AO) [4], where the same 

parameter is calculated by using an independent variable that is to be estimated and the other is an dependent 

variable. Comprehensive reports on sensorless drives obtained through model based estimation failed to 

assure permanent stability of the drive [5]-[8]. Moreover, the electrical drives are quite sensitive for changes 

occurring in equivalent circuit parameters of the motor. These errors in parameter changes degrade the speed 

holding characteristics of the drive. Many other closed loop methods for speed estimation such as rotor flux 

derivative [9]-[10], stator voltages [11], modified stator model [12], full order observer [13]-[14], reduced 

order observer [15]-[16], Kalman Filter observer [17], sliding mode observer [18]-[20]. Few sensorless 
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method don‟t rely on voltage and current measurement. They include artificial intelligence techniques based 

on neural networks [21]-[22] against variation in parameters. There are various online Speed estimation 

techniques such as Speed adaptive flux observer [23]. In signal based method the signals are injected on the 

motor. This has adverse effects on the dynamics that require additional hardware component for signal 

injection. Parameter estimation consists of Luenberg observer and adaptive observers.  

For lower order machine parameters the estimation technique using MRAS was considered as the 

most simplest and convenient method. Estimating parameters is a difficult task, especially, when the systems 

are large. Estimating large number of parameters becomes computationally expensive and the model based 

approach can no longer be adopted for speed estimation especialy in high performance drives. This has led to 

the development of new techniques in order to identify the parameters that affect the dynamic performance of 

the machine. The EKF is a stochastic state observer. The function of this observer is to linearize the nonlinear 

parameter in every sampling period. The EKF has the ability to estimate the states and machine parameters 

simultaneously in a dynamic process. This is useful for both control and diagnosis of the process [24]. 

Analysis on observability on 6
th

 order discrete time model based on 6
th

 order discrete time Extended Kalman 

Filter discusses the convergence of speed during transient conditions [25]. 

The EKF is a suboptimal control approach where fast parameter estimation is a non-trivial task and 

the parameters evolve with time as in real time applications. Recently, fuzzy logic based techniques have 

gained a wide attention in control applications. In high performance drive applications a desirable control in 

both transient and steady state conditions have to be provided even when the parameters and the load of the 

motor are varying. Hence, the control strategy developed for high performance drives must be adaptive and 

robust. The neural network based vector control has been able to produce better results but requires rigorous 

offline training process [26]. The fuzzy logic control technique has been an active research topic in 

automation and control engineering and has been applied to electric drives to deal with the nonlinearities and 

uncertainties of the control system [27].  

The main objective of the proposed strategy is to design a robust speed estimator and optimization 

mechanism using an adaptive fuzzy logic controller. The EKF not only estimates the speed, it also monitors 

and tracks the parameter variations. The discretized model of IM is used for this purpose to track the changes 

in parameters over time and respective control and monitoring process is carried out. Further work aims in 

sensorless speed control using Fuzzy based speed – regulator.  The work proposed presents an improvised 

speed regulation performance under transient and steady state uncertainties caused by variations in load 

torque and speed reversals. 

 

 

2. DISCRETIZED STATE MODEL OF INDUCTION MOTOR 

A dynamic electrical model for a three-phase induction motor has four state variables, namely, the 

stator currents in the direct and quadrature axis (ids, iqs) and the rotor fluxes (Фdr, Фqr). An extended induction 

motor model results, if the rotor speed is included as an additional state variable. The discretized extended 

model is as obtained from equations (1) to (4). 

 

X (    ) = A    ̂    + B U (  )                                                                 (1) 
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C = [
             
             

]                                                              (8) 

 

But, for an IM, the values of Rr, Rs, Lr, Ls, Lm and ωr are constant. Hence the state matrix, input 

matrix and output matrix will be constant matrices. 

 

 

3. PARAMETER ESTIMATION USING EXTENDED KALMAN FILTER 

The EKF is a recursive algorithm that uses series of measurements observed over time and produces 

estimates of unknown variables that tends to be more precise than those based on a single measurement 

alone. The conventional controller assumes the model to be linear [26]-[27].  

 

 

 
 

 Figure 1. Model of EKF 

 

 

The algorithm is based on Taylor‟s expansion of non-linear functions. It is intuitive and 

computationally efficient. Accurate parameter estimation becomes essential for any model based simulation, 

Control and optimization.  The EKF uses the discretized mathematical model of the machine, the stator 

currents and rotor fluxes for speed estimation. The model of EKF observer used for parameter estimation is 

depicted in Figure 1. The system consists of a plant whose parameters are to be estimated. The state is 

defined by x and the covariance matrix is obtained as p. For various working conditions of the machine, the 

parameters of x and p are updated. The state is propagated from t
k-1

 to t
k
 using model equations. Covariance 

matrix is propagated using tangent linear operator and its adjoint.  

Figure 1 represents the continuous time model with parameters augmented states as: 

 

 ̇             (9) 
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 ̇                          (10) 

 

                                                      (11) 

 

The discrete time updates of states and parameters at time tk are taken as: 

 

 ̂̇                                             (12) 
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The error estimation is obtained from 

 

                    ̂                              (14) 

 

Estimation error covariance matrix is given by, 
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The gain of the Kalman filter is calculated as: 

 

              ̅̅ ̅̅ ̅̅  
   

  
     ̂    ̅̅ ̅̅ ̅̅                             (16) 

 

The final Updation in parameters is obtained from: 

 

       
̂        ̂    ̅̅ ̅̅ ̅̅                    (17) 

 

              ̅̅ ̅̅ ̅̅                   
                                (18) 

 

In the methodology proposed, the estimator is developed with the measured direct and quadrature 

axes stator current, direct and quadrature axes stator flux and the reference speed to be used as state variables 

to estimate the rotor speed. In this paper, the sensitivity to motor parameter with respect to the EKF estimates 

is analyzed using MatLab/Simulink. The simulation results are presented for the sensorless drive system 

under different operating conditions. 

The state estimates are obtained by the EKF algorithm in the following steps: 

Step 1: Prediction of the state vector: 

The state vector is predicted at the sampling interval (    ). It is obtained from the input vector U 

(k) and state vector  ̂(  ).    

 

            ̂                      (19) 

 

The values of matrices A, B,  ̂     and       are obtained from equations (3), (5), (6) & (7) respectively.     

Step 2: Covariance estimation of prediction: 

The covariance matrix is calculated from equation 9:  
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     (20)  

 

The covariance matrix has the order of 5x5. The terms in Eqn. (20) can be represented by a gradient matrix f 

as: Where, f is the gradient matrix. 

 
 

  
[       ]                               (21) 

 

where, X=X*(    )   

 

Step 3: Computing the Kalman filter gain: 
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The gain matrix of the Kalman filter consists of 2 rows and 5 columns. The gain K is calculated as: 
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Here the parameter     is defined as another gradient matrix as:  

 
 

  
[   ]                                                                                           (23) 

 

where, X=X*(    )  

Step 4: Estimation of state vector: 

The estimation of the state vector (corrected state vector estimation) at time       is performed as 

follows: 

 

 ̂                                                (24) 

 

 ̂                       [           ̂      ]     (25)  

 

Step 5: Error covariance matrix:  

The error covariance matrix is obtained from 

 

 ̂                        [
 

  
[  ]]                 (26)    

 

Step 6: Parameter Updation: 

Substitute the value for k as:  

 

                                              (27) 

 

The algorithm is updated with the above values and an iterative modification of the covariance 

matrix is developed to obtain the most accurate estimation of the states. A faster transient response is 

obtained through proper tuning of the matrices Q & R. The algorithm described above can be used for the 

speed estimation of induction motor under both steady state and transient conditions. The estimated speed is 

compared with the actual speed and the error is given to the PI-Fuzzy controller which produces the required 

torque reference. From the estimated speed and the torque reference, the direct and quadrature axes reference 

currents are calculated and fed to the EKF estimator, giving an output of the estimated speed of the motor. 

The control and monitoring of the speed under no load and loaded conditions is obtained from an adaptive 

fuzzy logic controller. The proposed fuzzy controller acts as a speed regulator and regulates the speed to the 

required value depending upon the application. 

 

 

4. ADAPTIVE FUZZY SPEED REGULATOR 

Although the EKF algorithm is developed to produce least estimation errors, a need for optimizing 

the entire control system prevails. Hence, a fuzzy based speed regulator is developed as indicated in Figure 2.  

The inputs to the fuzzy logic controller are chosen as the speed error „e (k)‟ and change in error „ce (k)‟ at a 

sampling time ts. Both the input variables are calculated at every sampling interval. The Mamadani principle 

consisting of triangular membership function is selected.  The set of fuzzy rules required to diminish the error 

obtained in speed variations is quoted in Table 1. The linguistic variables in Table I indicate the fuzzy rules 

represented in the Fuzzy Associative Memory (FAM). Fuzzy control rule is regarded as the core of the whole 

fuzzy control. The proposed fuzzy control rules are based on the step response of conventional PI regulator, 

together with the characteristics of the vector control of induction motor. Here, E and CE represent the 

fuzzified values of error and its rate of change. 
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Figure 2. Basic Structure of Fuzzy speed regulator 

 

 

According to the different speed error e (k)  and its rate of change, the principles about the self-

adjustment of KP  and KI are listed as follows: 

a. When e(k) takes a relatively big number, a big number should also be assigned to KP   in order to 

accelerate the system speed response, but KI  must take a quite small number or even zero in order to 

prevent integral saturation and distinct speed overshooting. 

b. When e (k)  takes a moderate number, KP  must take a relatively small number and KI  must take a 

moderate one, in order to decrease the overshooting and ensure the swift speed response. 

c. When e (k) takes a relatively small number, the system usually runs in steady state, thus a moderate KP  

and a big KI, should be assigned to decrease static error and ensure the stability of the system. 

According to the different speed error e (k)  and its rate of change, fuzzy control rules of KP and KI 

at different states can be acquired as shown in Table 1.  

 

 

Table 1. FAM of FLC as a Fuzzy Speed regulator 
CE/E NB NM NS ZE PS PM PB 

NB NVB NVB NVB NB NM NS ZE 
NM NVB NVB NB NM NS ZE PS 

NS NVB NB NM NS ZE PS PM 

ZE NB NM NS ZE PS PM PB 
PS NM NS ZE PS PM PB PVB 

PM NS ZE PS PM PB PVB PVB 

PB ZE PS PM PB PVB PVB PVB 

 

 

5. SIMULATION ANALYSIS AND RESULTS 

5.1. No Load Condition 

The sensorless control of induction motor using EKF is simulated on MatLab/Simulink platform to 

study the various aspects of the speed estimator and adaptive fuzzy regulator. Figure 3 shows the speed 

response obtained using EKF under no-load condition for a reference speed of 500 rpm.  The simulation 

result shows that the actual speed almost exactly follows the reference speed. 

 

 

  
 

Figure 3. EKF speed estimation (ref = [0 500] rpm, 

with the Time interval of t= [0 1] s and under no-

load) 

 

Figure 4. EKF speed estimation (ref = [0 500 1000] 

rpm, with the time interval of t = [0 1 5] s and under 

no-load) 
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Also for a step change in the reference speed at 500 rpm and 1000 rpm, the response obtained from 

KF follows nearly the same response as the reference. This is illustrated in Figure 4. Another significant 

contribution of the developed fuzzy speed regulator is the reduction in ripple in the electromagnetic torque. 

As vector control schemes are said to produce large ripple, the reduction in torque ripple can be achieved to a 

greater extent using a robust fuzzy adaptive control as depicted in Figure 5. Figure 6 shows the response of 

the speed control obtained using EKF during speed changes over different ranges under no-load.  

 

 

 

 

Figure 5. Electromagnetic torque 

 
Figure 6. EKF speed estimation (ref = [0 700 100 

800 200] rpm, with the time interval of t = [0 0.5 2 

3.5 5] s and under no-load) 

 

      

5.2. Performance Analysis under load changes (transient-condition) 

Simulation studies have been performed for load changes and various speed ranges. The simulation 

results shows the use of the full order observer working efficiently even during load changes and speed 

change conditions. With a reference speed of 500rpm and a load of 3 N-m, the output obtained from EKF is 

exactly similar to that obtained for no-load condition, as in Figure 7.  Under this condition, the EKF estimator 

gives the response almost nearer to the reference speed, proving the efficiency of the algorithm. 

Figure 8 presents the response obtained by the estimation algorithm and the fuzzy controller for a 

change in speed in the range [0 700 100 800 200] rpm under the load conditions of [0 0.7 0.1 0.8 0.2] N-m 

applied at the time interval of [0 0.5 2 3.5 5] s. Even during Speed changes, it is seen that the machine 

remains stable and yields constant output over wide range of speed variations. 

 

 

  

Figure 7. EKF speed estimation (ref = [0 500] rpm, 

with the Time Interval of t = [0 1] s and under a load 

of 3 N-m) 

Figure 8. EKF speed estimation (ref = [0 700 100 

800 200] rpm, With the Load changes of [0 0.7 0.1 

0.8 0.2] N-m and in the  time interval of t = [0 0.5 2 

3.5 5] s) 

 

 

6. CONCLUSIONS 

The algorithm proposed is less sensitive to drift and saturation. This makes the estimation at or near 

zero speed quite accurate. For real time applications, the induction motor model is discretised.  

The performance of EKF is examined through several simulation studies. The EKF helps in estimating the 

non-observable system states and parameters. This method proves to be a robust technique wen compared to 
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conventional model based approaches. The optimum value of speed is obtained by a non-linear fuzzy 

controller. With significant uncertainties in load & other parameters, the EKF provides better state 

estimation. Also, decrease in the computational complexity and improvements in hard tuning of co-variance 

matrices have been achieved. The tuning of the algorithm is simpler compared to other EKF techniques due 

to the lower dimension of the state vector.  The estimation algorithm is in the form of a probability density 

function and all the process such as monitoring, tracking and model parameter tuning is achieved proving the 

efficacy of the proposed algorithm. Also, the Fuzzy speed- regulator tends to provide satisfactory high 

dynamic and static performances. The approach has shown a great improvement in computational efficiency 

over other parameter estimation methods. 
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