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 Scheduling of tasks based on real time requirement is a major issue in the 

heterogeneous multicore systems for micro-grid power management. 

Heterogeneous multicore processor schedules the serial tasks in the high 

performance core and parallel tasks are executed on the low performance 

cores. The aim of this paper is to implement a scheduling algorithm based on 

fuzzy logic for heterogeneous multicore processor for effective micro-grid 

application. Real – time tasks generally have different execution time and 

dead line. The main idea is to use two fuzzy logic based scheduling 

algorithm, first is to assign priority based on execution time and deadline of 

the task. Second , the task which has assigned higher priority get allotted for 

execution in high performance core and remaining tasks which are assigned 

low priority get allotted in low performance cores. The main objective of this 

scheduling algorithm is to increase the throughput and to improve CPU 

utilization there by reducing the overall power consumption of the micro-grid 

power management systems. Test cases with different task execution time 

and deadline were generated to evaluate the algorithms using MATLAB 

software. 
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1. INTRODUCTION  

The explosive growth of network bandwidth and Internet high traffic applications, such as web 

browsing, online searching, video streaming, and gaming, require orders of magnitude increase in packet 

processing throughput. The advent of commodity multicore platforms, such as Caviums OCTEON[1], Ciscos 

AON , and IBMs Blade Center[2,3] , has opened a new era of computing for network applications to take 

advantage of these low cost machines due to their superiority in performance, availability and 

programmability. More and more network packet processing systems have been developed on such platforms 

ranging from general-purpose processors (e.g., Intel’s Xeon and AMD’s Opteron) to network processors 

(e.g., Intel’s IXP platform) and programmable logic devices (e.g.,Net FPGA) [4,5]. To exploit available 

parallelism for better throughput, network applications running on multicore platforms usually take one of 

the following three forms: Spatial parallelism, where multiple concurrent packets are processed in different 

processors independently. Typical examples can be found in work for TCP (Transmission Control Protocol) 

parallelism , scalable DPI (Deep Packet Inspection) design , flow level packet processing] and parallel 

multimedia transcoding. Temporal parallelism (pipelining), where multiple processors are scheduled into a 

pipeline to overlap periodic executions from different threads . It has been widely adopted in network 

processors, including Shangri-La, auto-partitioning, statistical approach and Greedy. Hybrid parallelism 
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integrates both spatial and temporal parallelism to benefit from the advantages of both sides. It forms a 

parallel pipeline core topology, where each stage contains multiple parallel cores, such as Random and Bipar 

[6,7]. 

Traditional task scheduling schemes, such as list-based scheduling and clustering based scheduling, 

are capable of reducing program latency by exploiting fine grained task-level parallelism [8,9,10]. The 

Performance Analysis of Preemptive Based Uniprocessor Scheduling was discussed for the real time task 

[11] . The Processor Speed Control for the Real-Time Systems for power reduction was analysed [12].But 

these scheduling schemes do not apply pipelining process and they suffer from significant throughput 

deterioration when executing periodic packet processing tasks. Many researchers presented the results on 

reducing protocol latency for high-speed gateways and telecommunication systems based on hybrid 

parallelism. Developing a packet processing system that considers both latency and throughput for multicore 

architectures is both interesting and challenging [13,14]. Thus, we present a latency and throughput-aware 

scheduling scheme based on parallel-pipeline topology. 

Along with increased throughput and reduced latency, however, comes increased power 

consumption for network applications running on multicore architecture. Collectively, millions of servers in 

the global network consume a great deal of power. The chip manufactures continue to increase both the 

number of cores and their frequencies, substantially increasing both dynamic and static power consumption. 

Higher power consumption increases costs, both directly and indirectly. Energy itself is expected to become 

more expensive, especially if environmental impacts are factored into consumption. Higher power 

consumption also increases core temperature, which exponentially increases the cost of cooling and 

packaging . Higher temperatures also increase indirect and life-cycle costs due to reduced system 

performance, circuit reliability, and chip life-time. Therefore, power management is a first-order design issue. 

As we propose the parallel-pipeline scheduling on task-level, we realize that there has been no existing work 

considering the power budget issues for it. Previous power-aware algorithms either have not considered 

latency, or have not explored the parallel pipeline topology for task scheduling. Since power gating cannot be 

directly applied to task scheduling, we resort to DVFS to integrate power-awareness into parallel pipeline 

scheduling.  

 

 

2. METHODOLOGIES 

2.1  Latency And Throughput Aware Scheduling (LATA) 

We propose LATA, a latency and Throughput-Aware packet processing system for multicore 

architectures. It adopts hybrid parallelism with parallel pipeline core topology in fine-grained task level to 

achieve low latency and high throughput. We accomplish the above goal through the following three steps. 

First, we design a list-based pipeline scheduling algorithm from the task graph. Second, we apply a 

deterministic search-based refinement process to reduce latency and improve throughput through local 

adjustment. Third, we devise a cache-aware resource mapping scheme to generate a practical mapping onto a 

real machine. 

To the best of our knowledge, LATA is the first of its kind to consider both latency and throughput 

in packet processing systems. We implement LATA on an Intel machine with two Quad-Core Xeon E5335 

processors and conduct extensive experiments to show its better performance over other systems such as 

Parallel, Greedy, Random and Bipar. Based on six real packet processing applications chosen from Net 

Bench and Packet Bench, LATA exhibits an average of 36.5% reduction of latency across all applications 

without substantially degrading the throughput. It shows a maximum of 62.2% reduction of latency for URL 

application over Random with comparable throughput performance. 

 

2.2 Lata System Design 

In the LATA’s system design , we first generate its corresponding task graph with both computation 

and communication information. Then, we proceed in a three-step procedure to schedule and map the task 

graph according to our novel design. Last, we deploy the program onto a real multicore machine to obtain its 

performance result.  
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Figure 1. LATA system design flow chart. 

 

 

2.3 Communication measurement 

The communication time cannot be accurately measured between two cores in a multicore 

architecture unless we know the exact location of the cores. In LATA design, we use the average 

communication cost based on data cache access time, as given in Equations 1 and 2. Comm avg means the 

average communication cost to transfer a unit data set, which can be approximated by system memory 

latencies (L1, L2 and main memory access time) and program data cache performances (L1 and L2 cache hit 

rate). Data Size refers to the transferred data set size between two communicating tasks. 

 

Commavg= Commavg . Data Size (1) 

 

Commavg = ((TL1 . Hit L1) + ( TL2 . (1 − Hit L1 )). HitL2 + Tmem . ((1 −  Hit L1  ). (1 −  Hit L2 ))) (2) 

 

As we know, the throughput can be calculated by the inverse of the longest stage time 1/Tmax in 

pipelining. Thus, we form our objective function in Equation 3, where L is the scheduled latency. 

 

2.4 Problem Statement 

The latency can be defined as the schedule length of a program and throughput as the system 

throughput. The problem statement is: given the latency constraint L0, schedule a packet processing program 

in parallel pipeline core topology so as to maximize the throughput Th. The aim is to rearrange the tasks into 

the parallel pipeline task graph as shown in Figure 3, so that the total execution time T1 + T2 + T3 + T4 is 

minimized while maintaining the throughput as high as possible. As we know, the throughput can be 

calculated by the inverse of the longest stage time 1/Tmax in pipelining. Thus, we form our objective 

function in Equation 3, where L is the scheduled latency. 

 

Maximize Th =
1

Tmax
( s. t. at L ≤ L0) 

(3) 

 

 

3 PROPOSED LATENCY REDUCTION 

Latency can be reduced by reducing either computation time or communication time. Because 

computation dominates the overall execution time for most packet processing applications running on 

multicore architectures, we prioritize computation reduction in designing LATA. Hence, LATA first applies 

latency hiding to reduce computation time . 

Then, CCP elimination and CCP reduction are used to reduce communication time. Computation 

reduction: We defined a critical node as the node in a pipeline stage which dominates the computation time. 

Then, Latency hiding can be defined as a technique that places a critical node from one stage to one of its 

adjacent stages without violating dependencies, so that its computation time is shadowed by the other critical 

node in the new stage. Backward hiding (BaH) refers to placing a critical node into its precedent stage. 

Forward hiding (FoH) refers to placing a critical node into its following stage which is shown in Figure 2 . 
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Figure 2. Latency hiding on node E. 

 

 

4 PERFORMANCE EVALUATION 

The latency and throughput for six applications by LATA, Parallel and List are shown in the Figures 

3 and 4. We observe that Parallel suffers from high latency due to its sequential execution of tasks. Compared 

with Parallel, LATA reduces the latency by an average of 34.2%.  

 

 

  
 

Figure 3. Latency of six applications by LATA, 

Parallel and List 

 

Figure 4. Throughput of six applications by LATA, 

Parallel and List 

 

 

Particularly, for URL, LATA achieves the maximal latency reduction of 62.2%. In addition, 

LATA’s throughput is close to that of Parallel in spite of the 75% latency constraint. This is because LATA 

is capable of optimizing its parallel pipeline core topology to produce good throughput. With respect to List, 

which is designed to produce the lowest latency, LATA actually matches its latency performance in most 

cases by aggressively exploiting task-level parallelism. Furthermore, LATA outperforms List in throughput 

by an average of 41.0% and a maximum of 56.7% for Route. 

 

 

5. POWER AWARE PARALLEL PIPELINE SCHEDULING ALGORITHM 

We introduce the novel parallel-pipeline scheduling on task-level for network applications that can 

attain high throughput under given latency constraints. In this chapter, we address the power budget issue for 

this scheduling paradigm for network packet processing. We aim at optimizing both throughput and latency 

under given power budget by appropriately applying per-core DVFS. We propose a three-step solution to 

achieve our goal. 

 

5.1 A three-step recursive algorithm 

STEP 1: In the first step, we reduce the power without compromising throughput or latency by 

keeping the pipeline stage time Ti, i = 1, 2... S unchanged. We define a critical node as the node in a pipeline 

stage that dominates the computation time. Therefore, the computation time of a critical node is equal to the 

pipeline stage time (ti = Ti). For each stage Si, we increase the computation time of non-critical nodes in that 
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stage to the length of Ti. Since all stage times remain the same, the throughput and the latency will also keep 

unchanged during this step which is depicted in the Figure 5. 

 

 

  
 

Figure 5. Illustration of the first step of the algorithm 

 

Figure 6. Illustration of the second step of the 

algorithm 

 

 

 
 

Figure 7. Illustration of the third step of the algorithm 

 

 

STEP 2: In the second step, we reduce the power with throughput unchanged and minimal latency 

increase which is shown in Figure 6 . This is achieved by keeping the longest stage time Tmax unchanged 

while we increase the stage time of other stages. We denote the stage with Tmax as the bottleneck stage in 

the pipeline. Thus, all other stages are non-bottleneck stages. We define ∆T as the shortest time period by 

which we can increase the latency. To minimize the latency increase, we iteratively increase the latency by 

∆T until the power budget is satisfied or all the stages reach Tmax. If the former comes true, the algorithm 

returns and the resulting scheduling guarantees the minimal latency increase, which will be proved shortly. 

Otherwise, if the latter comes true, we proceed to step three. 

STEP 3: In the third step, we reduce the power by minimizing both the throughput and the latency 

performance loss. After step two, every stage has the same stage time Tmax. Following the same rule of 

choosing a candidate stage in step two, we optimally choose a stage to further increase its stage time by ∆T. 

Since the original Tmax is increased, the throughput is compromised accordingly which is shown in the 

Figure 7 . 

 

 

6. POWER MODEL 

Consider that task T consists of C clock cycles on processor P, which runs at voltage V and 

frequency f. We assume that C does not change with different V and f. For a given voltage V , processor P 

has an average power consumption Pow. It is known that processor power consumption is dominated by 

dynamic power dissipation given by:  

 

Pow =  Ka . f. V2 (4) 
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Where Ka is a task/processor dependent factor determined by the switched capacitance. 

The energy consumed by executing task T on processor P is computed as:  

 

E =  C . Pow f         (5) 
 

We can rewrite it as:  

 

E = C. Ef         (6) 
 

V = C. Ka . V2         (7) 
 

Where Ef, V is the average cycle energy.  

From this we can see that lowering the voltage would yield a drastic decrease in energy 

consumption. The frequency f is almost linearly related to the voltage:  

 

f =  Kb  . ( V −  VT)(V − VT )2 . V       (8) 
 

Where VT is the threshold voltage and Kb is a constant. For a sufficiently small threshold voltage, 

the frequency is approximated to Kb. 

However, our algorithm is able to guarantee a minimal performance loss in this scenario. The proof 

of optimality is in line with that in step two, where the minimal time period increment guarantees that when 

we satisfy the power budget constraint, the performance loss is minimal which is shown in the Figure 8. 

 

 

 
 

Figure 8. The power-aware parallel-pipeline scheduling algorithm. 

 

 

In our system, since energy increases when performance degrades (i.e., a longer execution time), we 

assign a higher weight to performance by setting αc = 0.15 αm. Specifically, the lost factors for GPU cores 

and memory are calculated as: 

 

l_Ci
t  =  αc . Cie

t  + (1 − αc ) (l_Cip
t  )       (9) 

 

Then we combined core and memory lost functions together by a factor, which balances core impact 

and memory impact in influencing system performance and energy. 

 

Total Loss ij 
t =  ∅ . l_   Ci

t + (1 −  ∅ ). l_ mj
t      (10) 

 

Shows how total lost function is obtained. For different CPU-GPU systems, by tuning φ value the 

system can achieve balance between core and memory influence. In our hardware tested, 0.33 is the value 

reflects system characteristic derived from experiments. Based on the total loss, the weights used in the 

frequency scaling algorithm can be updated as follows. 

 

weight ij
(t+1)

= ((weightij
t  )( 1 − ( 1 − β). Total Loss ij

t  )     (11) 
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The algorithm will be more robust to system noise. A smaller β gives more weight on loss factor of 

current time interval. The algorithm will respond to workload change in a short time. In our experiment, we 

select β = 0.2 to filter out system noise with quick workload change response. Almond the entire N × M 

weights (assume we have N core frequency levels and M memory frequency levels), the highest one is 

selected and its corresponding core and memory frequencies are enforced in the next period. 

 

 

6. EXPERIMENTAL RESULTS 
The power and thermal-aware scheduling results for different benchmarks from the embedded 

system synthesis benchmarks suite or generated using the MATLAB tool. The process of Task scheduling is 

shown in the Figure 9. The ILP solutions were generated using OPENMP. The simulations were performed 

on a dual core system of 3 GHZ processor. The output execution and the results using the fuzzy logic 

techniques are shown in the Figures 10,11and12.The execution time and the relative deadline are adjusted to 

get the desired priority of the tasks. The modified priority order based on the fuzzy logic output is shown in 

the Figure 13. The corresponding waveforms are depicted in the Figure 14. As the power information of the 

processing elements in these benchmarks is not available, approximation values based on the internal 

structure of each core is used. Based on these approximated values, the power consumption of each core is 

adjusted by replacing by an estimated number of gates in the module. The hardware prototype model for the 

Real - Time task scheduling in Heterogeneous Multicore Processor for Microgrid Power Management is 

shown in the Figure15. 

 

 

 
Figure 9.Task scheduling process 

 

 

  
 

Figure 10. Executing output according to Rules 

 

Figure 11. Input Waveform 
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Figure 12 . Output Waveforms 

 

Figure 13. Adjusting Execution and Deadline for 

Getting Priority 

 

 

  
 

Figure 14. Output Waveform 

 

Figure 15. Prototype Hardware model 

 

 

7. CONCLUSION 

Current research on GPU-CPU systems focuses mainly on the performance aspects, while the 

energy efficiency of such systems receives much less attention. There are few existing studies that start to 

lower the energy consumption of GPU-CPU architectures, but they address either GPU or CPU in an isolated 

manner and thus cannot achieve maximized energy savings. In this paper, we have presented Green GPU, a 

holistic energy management framework for GPU-CPU heterogeneous architectures. Our solution features a 

two-tier design. In the first tier, Green GPU dynamically splits and distributes workloads to GPU and CPU 

based on the workload characteristics, such that both sides can finish approximately at the same time. As a 

result, the energy wasted on staying idle and waiting for the slower side to finish is minimized. In the second 

tier, Green GPU dynamically throttles the frequencies of GPU cores and memory in a coordinated manner, 

based on their utilizations, for maximized energy savings with only marginal performance degradation. 

Likewise, the frequency and voltage of the CPU are scaled similarly. We implement Green GPU using the 

CUDA framework on a real physical tested with Nvidia GeForce GPUs and AMD Phenom II CPUs. 

Experiment results with standard Rodinia benchmarks show that Green GPU achieves 21.04% average 

energy savings and outperform several well-designed baselines. 
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