
International Journal of Power Electronics and Drive System (IJPEDS)

Vol. 9, No. 1, March 2018, pp. 80~88

ISSN: 2088-8694, DOI: 10.11591/ijpeds.v9.i1.pp80-88  80

Journal homepage: http://iaescore.com/journals/index.php/IJPEDS

A Novel Approach in Scheduling Of the Real- Time Tasks In

Heterogeneous Multicore Processor with Fuzzy Logic

Technique For Micro-grid Power Management

Lavanya Dhanesh1, P. Murugesan2
1Sathyabama University, Chennai, India

2S.A. Engineering College, Chennai, India

Article Info ABSTRACT

Article history:

Received Jul 10, 2017

Revised Aug 28, 2017

Accepted Jan 1, 2018

 Scheduling of tasks based on real time requirement is a major issue in the

heterogeneous multicore systems for micro-grid power management.

Heterogeneous multicore processor schedules the serial tasks in the high

performance core and parallel tasks are executed on the low performance

cores. The aim of this paper is to implement a scheduling algorithm based on

fuzzy logic for heterogeneous multicore processor for effective micro-grid

application. Real – time tasks generally have different execution time and

dead line. The main idea is to use two fuzzy logic based scheduling

algorithm, first is to assign priority based on execution time and deadline of

the task. Second , the task which has assigned higher priority get allotted for

execution in high performance core and remaining tasks which are assigned

low priority get allotted in low performance cores. The main objective of this

scheduling algorithm is to increase the throughput and to improve CPU

utilization there by reducing the overall power consumption of the micro-grid

power management systems. Test cases with different task execution time

and deadline were generated to evaluate the algorithms using MATLAB

software.

Keyword:

Deadline

Execution time

Fuzzy logic

Micro-grid

Multicore

Priority

Real –Time tasks

Scheduling

Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Lavanya Dhanesh,

Research Scholar, Sathyabama University,

Chennai, India.

Email: lavanyadhanesh2007@gmail.com

1. INTRODUCTION

The explosive growth of network bandwidth and Internet high traffic applications, such as web

browsing, online searching, video streaming, and gaming, require orders of magnitude increase in packet

processing throughput. The advent of commodity multicore platforms, such as Caviums OCTEON[1], Ciscos

AON , and IBMs Blade Center[2,3] , has opened a new era of computing for network applications to take

advantage of these low cost machines due to their superiority in performance, availability and

programmability. More and more network packet processing systems have been developed on such platforms

ranging from general-purpose processors (e.g., Intel’s Xeon and AMD’s Opteron) to network processors

(e.g., Intel’s IXP platform) and programmable logic devices (e.g.,Net FPGA) [4,5]. To exploit available

parallelism for better throughput, network applications running on multicore platforms usually take one of

the following three forms: Spatial parallelism, where multiple concurrent packets are processed in different

processors independently. Typical examples can be found in work for TCP (Transmission Control Protocol)

parallelism , scalable DPI (Deep Packet Inspection) design , flow level packet processing] and parallel

multimedia transcoding. Temporal parallelism (pipelining), where multiple processors are scheduled into a

pipeline to overlap periodic executions from different threads . It has been widely adopted in network

processors, including Shangri-La, auto-partitioning, statistical approach and Greedy. Hybrid parallelism

Int J Power Electron & Dri Syst ISSN: 2088-8694 

A Novel Approach in Scheduling Of the Real- Time Tasks In Heterogeneous Multicore… (Lavanya Dhanesh)

81

integrates both spatial and temporal parallelism to benefit from the advantages of both sides. It forms a

parallel pipeline core topology, where each stage contains multiple parallel cores, such as Random and Bipar

[6,7].

Traditional task scheduling schemes, such as list-based scheduling and clustering based scheduling,

are capable of reducing program latency by exploiting fine grained task-level parallelism [8,9,10]. The

Performance Analysis of Preemptive Based Uniprocessor Scheduling was discussed for the real time task

[11] . The Processor Speed Control for the Real-Time Systems for power reduction was analysed [12].But

these scheduling schemes do not apply pipelining process and they suffer from significant throughput

deterioration when executing periodic packet processing tasks. Many researchers presented the results on

reducing protocol latency for high-speed gateways and telecommunication systems based on hybrid

parallelism. Developing a packet processing system that considers both latency and throughput for multicore

architectures is both interesting and challenging [13,14]. Thus, we present a latency and throughput-aware

scheduling scheme based on parallel-pipeline topology.

Along with increased throughput and reduced latency, however, comes increased power

consumption for network applications running on multicore architecture. Collectively, millions of servers in

the global network consume a great deal of power. The chip manufactures continue to increase both the

number of cores and their frequencies, substantially increasing both dynamic and static power consumption.

Higher power consumption increases costs, both directly and indirectly. Energy itself is expected to become

more expensive, especially if environmental impacts are factored into consumption. Higher power

consumption also increases core temperature, which exponentially increases the cost of cooling and

packaging . Higher temperatures also increase indirect and life-cycle costs due to reduced system

performance, circuit reliability, and chip life-time. Therefore, power management is a first-order design issue.

As we propose the parallel-pipeline scheduling on task-level, we realize that there has been no existing work

considering the power budget issues for it. Previous power-aware algorithms either have not considered

latency, or have not explored the parallel pipeline topology for task scheduling. Since power gating cannot be

directly applied to task scheduling, we resort to DVFS to integrate power-awareness into parallel pipeline

scheduling.

2. METHODOLOGIES

2.1 Latency And Throughput Aware Scheduling (LATA)

We propose LATA, a latency and Throughput-Aware packet processing system for multicore

architectures. It adopts hybrid parallelism with parallel pipeline core topology in fine-grained task level to

achieve low latency and high throughput. We accomplish the above goal through the following three steps.

First, we design a list-based pipeline scheduling algorithm from the task graph. Second, we apply a

deterministic search-based refinement process to reduce latency and improve throughput through local

adjustment. Third, we devise a cache-aware resource mapping scheme to generate a practical mapping onto a

real machine.

To the best of our knowledge, LATA is the first of its kind to consider both latency and throughput

in packet processing systems. We implement LATA on an Intel machine with two Quad-Core Xeon E5335

processors and conduct extensive experiments to show its better performance over other systems such as

Parallel, Greedy, Random and Bipar. Based on six real packet processing applications chosen from Net

Bench and Packet Bench, LATA exhibits an average of 36.5% reduction of latency across all applications

without substantially degrading the throughput. It shows a maximum of 62.2% reduction of latency for URL

application over Random with comparable throughput performance.

2.2 Lata System Design

In the LATA’s system design , we first generate its corresponding task graph with both computation

and communication information. Then, we proceed in a three-step procedure to schedule and map the task

graph according to our novel design. Last, we deploy the program onto a real multicore machine to obtain its

performance result.

  ISSN: 2088-8694

 Int J Power Electron & Dri Syst, Vol. 9, No. 1, March 2018 : 80 – 88

82

Figure 1. LATA system design flow chart.

2.3 Communication measurement

The communication time cannot be accurately measured between two cores in a multicore

architecture unless we know the exact location of the cores. In LATA design, we use the average

communication cost based on data cache access time, as given in Equations 1 and 2. Comm avg means the

average communication cost to transfer a unit data set, which can be approximated by system memory

latencies (L1, L2 and main memory access time) and program data cache performances (L1 and L2 cache hit

rate). Data Size refers to the transferred data set size between two communicating tasks.

Commavg= Commavg . Data Size (1)

Commavg = ((TL1 . Hit L1) + (TL2 . (1 − Hit L1)). HitL2 + Tmem . ((1 − Hit L1). (1 − Hit L2))) (2)

As we know, the throughput can be calculated by the inverse of the longest stage time 1/Tmax in

pipelining. Thus, we form our objective function in Equation 3, where L is the scheduled latency.

2.4 Problem Statement

The latency can be defined as the schedule length of a program and throughput as the system

throughput. The problem statement is: given the latency constraint L0, schedule a packet processing program

in parallel pipeline core topology so as to maximize the throughput Th. The aim is to rearrange the tasks into

the parallel pipeline task graph as shown in Figure 3, so that the total execution time T1 + T2 + T3 + T4 is

minimized while maintaining the throughput as high as possible. As we know, the throughput can be

calculated by the inverse of the longest stage time 1/Tmax in pipelining. Thus, we form our objective

function in Equation 3, where L is the scheduled latency.

Maximize Th =
1

Tmax
(s. t. at L ≤ L0)

(3)

3 PROPOSED LATENCY REDUCTION

Latency can be reduced by reducing either computation time or communication time. Because

computation dominates the overall execution time for most packet processing applications running on

multicore architectures, we prioritize computation reduction in designing LATA. Hence, LATA first applies

latency hiding to reduce computation time .

Then, CCP elimination and CCP reduction are used to reduce communication time. Computation

reduction: We defined a critical node as the node in a pipeline stage which dominates the computation time.

Then, Latency hiding can be defined as a technique that places a critical node from one stage to one of its

adjacent stages without violating dependencies, so that its computation time is shadowed by the other critical

node in the new stage. Backward hiding (BaH) refers to placing a critical node into its precedent stage.

Forward hiding (FoH) refers to placing a critical node into its following stage which is shown in Figure 2 .

Int J Power Electron & Dri Syst ISSN: 2088-8694 

A Novel Approach in Scheduling Of the Real- Time Tasks In Heterogeneous Multicore… (Lavanya Dhanesh)

83

Figure 2. Latency hiding on node E.

4 PERFORMANCE EVALUATION

The latency and throughput for six applications by LATA, Parallel and List are shown in the Figures

3 and 4. We observe that Parallel suffers from high latency due to its sequential execution of tasks. Compared

with Parallel, LATA reduces the latency by an average of 34.2%.

Figure 3. Latency of six applications by LATA,

Parallel and List

Figure 4. Throughput of six applications by LATA,

Parallel and List

Particularly, for URL, LATA achieves the maximal latency reduction of 62.2%. In addition,

LATA’s throughput is close to that of Parallel in spite of the 75% latency constraint. This is because LATA

is capable of optimizing its parallel pipeline core topology to produce good throughput. With respect to List,

which is designed to produce the lowest latency, LATA actually matches its latency performance in most

cases by aggressively exploiting task-level parallelism. Furthermore, LATA outperforms List in throughput

by an average of 41.0% and a maximum of 56.7% for Route.

5. POWER AWARE PARALLEL PIPELINE SCHEDULING ALGORITHM

We introduce the novel parallel-pipeline scheduling on task-level for network applications that can

attain high throughput under given latency constraints. In this chapter, we address the power budget issue for

this scheduling paradigm for network packet processing. We aim at optimizing both throughput and latency

under given power budget by appropriately applying per-core DVFS. We propose a three-step solution to

achieve our goal.

5.1 A three-step recursive algorithm

STEP 1: In the first step, we reduce the power without compromising throughput or latency by

keeping the pipeline stage time Ti, i = 1, 2... S unchanged. We define a critical node as the node in a pipeline

stage that dominates the computation time. Therefore, the computation time of a critical node is equal to the

pipeline stage time (ti = Ti). For each stage Si, we increase the computation time of non-critical nodes in that

  ISSN: 2088-8694

 Int J Power Electron & Dri Syst, Vol. 9, No. 1, March 2018 : 80 – 88

84

stage to the length of Ti. Since all stage times remain the same, the throughput and the latency will also keep

unchanged during this step which is depicted in the Figure 5.

Figure 5. Illustration of the first step of the algorithm

Figure 6. Illustration of the second step of the

algorithm

Figure 7. Illustration of the third step of the algorithm

STEP 2: In the second step, we reduce the power with throughput unchanged and minimal latency

increase which is shown in Figure 6 . This is achieved by keeping the longest stage time Tmax unchanged

while we increase the stage time of other stages. We denote the stage with Tmax as the bottleneck stage in

the pipeline. Thus, all other stages are non-bottleneck stages. We define ∆T as the shortest time period by

which we can increase the latency. To minimize the latency increase, we iteratively increase the latency by

∆T until the power budget is satisfied or all the stages reach Tmax. If the former comes true, the algorithm

returns and the resulting scheduling guarantees the minimal latency increase, which will be proved shortly.

Otherwise, if the latter comes true, we proceed to step three.

STEP 3: In the third step, we reduce the power by minimizing both the throughput and the latency

performance loss. After step two, every stage has the same stage time Tmax. Following the same rule of

choosing a candidate stage in step two, we optimally choose a stage to further increase its stage time by ∆T.

Since the original Tmax is increased, the throughput is compromised accordingly which is shown in the

Figure 7 .

6. POWER MODEL

Consider that task T consists of C clock cycles on processor P, which runs at voltage V and

frequency f. We assume that C does not change with different V and f. For a given voltage V , processor P

has an average power consumption Pow. It is known that processor power consumption is dominated by

dynamic power dissipation given by:

Pow = Ka . f. V2 (4)

Int J Power Electron & Dri Syst ISSN: 2088-8694 

A Novel Approach in Scheduling Of the Real- Time Tasks In Heterogeneous Multicore… (Lavanya Dhanesh)

85

Where Ka is a task/processor dependent factor determined by the switched capacitance.

The energy consumed by executing task T on processor P is computed as:

E = C . Pow f (5)

We can rewrite it as:

E = C. Ef (6)

V = C. Ka . V2 (7)

Where Ef, V is the average cycle energy.

From this we can see that lowering the voltage would yield a drastic decrease in energy

consumption. The frequency f is almost linearly related to the voltage:

f = Kb . (V − VT)(V − VT)2 . V (8)

Where VT is the threshold voltage and Kb is a constant. For a sufficiently small threshold voltage,

the frequency is approximated to Kb.

However, our algorithm is able to guarantee a minimal performance loss in this scenario. The proof

of optimality is in line with that in step two, where the minimal time period increment guarantees that when

we satisfy the power budget constraint, the performance loss is minimal which is shown in the Figure 8.

Figure 8. The power-aware parallel-pipeline scheduling algorithm.

In our system, since energy increases when performance degrades (i.e., a longer execution time), we

assign a higher weight to performance by setting αc = 0.15 αm. Specifically, the lost factors for GPU cores

and memory are calculated as:

l_Ci
t = αc . Cie

t + (1 − αc) (l_Cip
t) (9)

Then we combined core and memory lost functions together by a factor, which balances core impact

and memory impact in influencing system performance and energy.

Total Loss ij
t = ∅ . l_ Ci

t + (1 − ∅). l_ mj
t (10)

Shows how total lost function is obtained. For different CPU-GPU systems, by tuning φ value the

system can achieve balance between core and memory influence. In our hardware tested, 0.33 is the value

reflects system characteristic derived from experiments. Based on the total loss, the weights used in the

frequency scaling algorithm can be updated as follows.

weight ij
(t+1)

= ((weightij
t)(1 − (1 − β). Total Loss ij

t) (11)

  ISSN: 2088-8694

 Int J Power Electron & Dri Syst, Vol. 9, No. 1, March 2018 : 80 – 88

86

The algorithm will be more robust to system noise. A smaller β gives more weight on loss factor of

current time interval. The algorithm will respond to workload change in a short time. In our experiment, we

select β = 0.2 to filter out system noise with quick workload change response. Almond the entire N × M

weights (assume we have N core frequency levels and M memory frequency levels), the highest one is

selected and its corresponding core and memory frequencies are enforced in the next period.

6. EXPERIMENTAL RESULTS
The power and thermal-aware scheduling results for different benchmarks from the embedded

system synthesis benchmarks suite or generated using the MATLAB tool. The process of Task scheduling is

shown in the Figure 9. The ILP solutions were generated using OPENMP. The simulations were performed

on a dual core system of 3 GHZ processor. The output execution and the results using the fuzzy logic

techniques are shown in the Figures 10,11and12.The execution time and the relative deadline are adjusted to

get the desired priority of the tasks. The modified priority order based on the fuzzy logic output is shown in

the Figure 13. The corresponding waveforms are depicted in the Figure 14. As the power information of the

processing elements in these benchmarks is not available, approximation values based on the internal

structure of each core is used. Based on these approximated values, the power consumption of each core is

adjusted by replacing by an estimated number of gates in the module. The hardware prototype model for the

Real - Time task scheduling in Heterogeneous Multicore Processor for Microgrid Power Management is

shown in the Figure15.

Figure 9.Task scheduling process

Figure 10. Executing output according to Rules

Figure 11. Input Waveform

Task Token Generators

Task Token Manager

Tasks

in

Value of 'A'

Task 1

Next task 1

Task 2

Task 3

Next task 3

Task 4

Task In

Task Out

Task Dispatcher

ISR Token in

Task Token in

Task Token Out

Task Delay

f unction()

Out1

Task 4 (+1)

f unction()

Out1

Task 3 (+2)

f unction()

Out1

Task 2 (-3)

f unction()

Out1

Task 1 (+10)

Task Complete

Plots

f unction()

Out1

Monitor

HP Token

Interrupt-Priority Task

Token Generator Task ID 1

f unction()

Out1

Initial Value

f()

Initial Event

A

Data Store Memory

LP Token

Application-Priority Task

Token Generator

Task ID 3

Start LP Token

Application-Priority

Token Generator

Task ID 4

Start LP Token

Application-Priority

Token Generator

Task ID 2

IN1

IN2

IN3

OUT

Application

Task Combiner

Int J Power Electron & Dri Syst ISSN: 2088-8694 

A Novel Approach in Scheduling Of the Real- Time Tasks In Heterogeneous Multicore… (Lavanya Dhanesh)

87

Figure 12 . Output Waveforms

Figure 13. Adjusting Execution and Deadline for

Getting Priority

Figure 14. Output Waveform

Figure 15. Prototype Hardware model

7. CONCLUSION

Current research on GPU-CPU systems focuses mainly on the performance aspects, while the

energy efficiency of such systems receives much less attention. There are few existing studies that start to

lower the energy consumption of GPU-CPU architectures, but they address either GPU or CPU in an isolated

manner and thus cannot achieve maximized energy savings. In this paper, we have presented Green GPU, a

holistic energy management framework for GPU-CPU heterogeneous architectures. Our solution features a

two-tier design. In the first tier, Green GPU dynamically splits and distributes workloads to GPU and CPU

based on the workload characteristics, such that both sides can finish approximately at the same time. As a

result, the energy wasted on staying idle and waiting for the slower side to finish is minimized. In the second

tier, Green GPU dynamically throttles the frequencies of GPU cores and memory in a coordinated manner,

based on their utilizations, for maximized energy savings with only marginal performance degradation.

Likewise, the frequency and voltage of the CPU are scaled similarly. We implement Green GPU using the

CUDA framework on a real physical tested with Nvidia GeForce GPUs and AMD Phenom II CPUs.

Experiment results with standard Rodinia benchmarks show that Green GPU achieves 21.04% average

energy savings and outperform several well-designed baselines.

REFERENCES
[1] Cavium octeon processor family.http://www.caviumnetworks.com/OCTEONMIPS64.html.

[2] IBM BladeCenter System. http://www-03.ibm.com/systems/bladecenter.

[3] IBM POWER7 Systems. http://www-03.ibm.com/systems/power.

[4] Intel ixp2xxx product line of network processors. http://intel.com/design/network/products/npfamily/index.html.

[5] Intel xeon machine. http://www.Intel.com/Xeon.

http://www-03.ibm.com/systems/power
http://intel.com/design/network/products/npfamily/index.html
http://www.intel.com/Xeon

  ISSN: 2088-8694

 Int J Power Electron & Dri Syst, Vol. 9, No. 1, March 2018 : 80 – 88

88

[6] Chen, D. Zhang and Z. Wang, “Research of the heterogeneous multi-Core processor architecture design [J]”,

Computer Engineering and Science, vol. 33, no. 12, (2011), pp. 27-36.

[7] S K. Baruah, “Partitioning real-time tasks among heterogeneous multiprocessors”, In: Proc. of the 2004

International Conference on Parallel Processing, ICPP, Toronto, Canada, (2004), pp. 467-474.

[8] R. Li, Y. Liu and X. Cheng, “A Survey of task scheduling research progress on multiprocessor”, Journal of

Computer Research and Development, vol. 45, no. 9, (2008), pp. 1620-1629.

[9] J. Li and S. Jin, “Research on static task scheduling strategy based on heterogeneous multi-core processors [J]”,

Computer Engineering and Design, vol. 34, no. 1, (2013), pp. 178-184.

[10] J. Jiang, “Research on embedded software key issues of heterogeneous multi-core processor [D]”, Chong Qing

University, (2011).

[11] M Shanmugasundaram , R. Kumar and Harish M Kittur “Performance Analysis of Preemptive Based Uniprocessor

Scheduling” in the International Journal of Electrical and Computer Engineering (IJECE) Vol. 6, No. 4, August

2016, pp. 1489 -1498

[12] Medhat H Awadalla “Processor Speed Control for Power Reduction of Real-Time Systems” International Journal

of Electrical and Computer Engineering (IJECE) Vol. 5, No. 4, August 2015, pp. 701-713.

[13] S. Albers, “Energy-efficient algorithms,” Commun. ACM, vol. 53, no. 5, pp. 86–96, May 2010. [Online].

Available: http://doi.acm.org/10.1145/1735223.1735245.

[14] P. Cichowski, J. Keller, and C. Kessler, “Energy-efficient mapping of task collections onto manycore processors,”

in Proc. 5th Swedish Workshop on Mulitcore Computing (MCC 2012), 2012.

BIOGRAPHIES OF AUTHORS

Mrs Lavanya Dhanesh received her B.E. degree in Electrical and Electronics Engineering from

Bharathiyar University at 2002. She completed her M.E. in Embedded System Design from

Anna University ,Chennai at 2009. She is a Research Scholar at Sathyabama University and

currently working at Panimalar Institute of Technology,Chennai

Dr P.Murugesan has done his specialization in Power Systems. He is currently working

as a professor /EEE at S.A.Engineering college,Chennai. He gives research ideas and

much interested in the field of low-power computing, fault tolerance and real-time

embedded systems.

http://doi.acm.org/10.1145/1735223.1735245

