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ABSTRACT

This paper is concerned with the stability and Robust stabilization prob-
lem for 2-D continuous systems in Roesser model, based on Generalized
Kalman−Yakubovich−Popov lemma in combination with frequency-partitioning ap-
proach. Sufficient conditions of stability of the systems are formulated via linear ma-
trix inequality technique. Finally, numerical examples are given to illustrate the effec-
tiveness of the proposed method.
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1. INTRODUCTION
Stability of 2-D continuous systems is the major aim in all researches, in order to guarantee the nor-

mal operation of systems. In relation with these researches, there are various results in the past decades. For
example, the stability of 2-D continuous systems has been solved lately in [1], the stability margin of 2-D con-
tinuous systems have been computed with a new method in [2], LMI based stability analysis for 2-D continuous
systems was considered in [3], Robust stability analysis for 2-D continuous-time systems was obtained in [4],
the stability analysis based on the quadratic Lyapunov function was obtained in [5], H∞ filtering of uncertain
2-D continuous systems with time-varying delays was considered in [6]. In addition, the Robust stabilization
and control design have been studied in some papers as well, to list some of these, authors in [7] proposed the
robust state feedback H∞ control for uncertain 2-D continuous state delayed Roesser systems. H∞ control
of 2-D continuous switched systems have been investigated in [8], multiobjective H2/H∞ control design was
considered in [9], LMI based robust PID control has been solved in [10], and stabilization of two-dimensional
continuous systems have been investigated in [11].

Recently, attention has been devoted towards the Kalman−Yakubovich−Popov (KYP) lemma in [12],
this lemma makes equivalence between frequency domain inequality (FDI) characterizing a class of properties
of a transfer function, and a linear matrix inequality (LMI) in [13], for its state space realization. Therefore,
authors in [14] has proposed an extension of the KYP lemma, which is known as Generalized KYP (GKYP)
lemma for the case of finite frequency domain. The 2-D GKYP lemma is obtained for Roesser model of 2-D
continuous systems in [15], and for 2-D discrete systems, for both cases: Fornasini-Marchesini (FM) and for
Roesser models, in [16] and [17], respectively. The GKYP combined with the frequency-partitioning approach
to stability analysis, were obtained in [18] for 2-D discrete system, and for hybrid systems in [19, 20].

Motivated by the Previous research, in this paper, we suggest a sufficient conditions of stability of
2-D continuous Roesser systems, via GKYP lemma and frequency-partitioning approach, in order to reduce
the conservativeness of the existing simple 2-D continuous Lyapunov inequality. Generally, in order to realize
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a series of novel stability conditions for our system, the GKYP lemma is applied on each one of theN intervals
of the entire frequency domain. Moreover, robust stabilization is also considered based on the proposed stabil-
ity conditions. Finally, numerical examples are given to demonstrate the effectiveness of the proposed method.

Notation: we use the following notation throughout this paper. The superscript T, *, -1 stand for matrix
transpose, matrix complex conjugate transpose, and matrix inverse, respectively. I denotes an identity matrix
with appropriate dimension. The notation P > 0 (P < 0) means that matrix P is positive (negative) definite.
diag{.} stands for the block diagonal matrix, Reλ(.) is the real of eigenvalue of a square matrix. Matrices, if
their dimensions are not explicitly stated, are assumed to be compatible for algebraic operations.

2. PROBLEM FORMULATION AND PRELIMINARIES
Consider the following Roesser model for 2-D continuous systems :[

∂xh(t1,t2)
∂t1

∂xv(t1,t2)
∂t2

]
=

[
A1 A2

A3 A4

] [
xh(t1, t2)
xv(t1, t2)

]
+

[
B1

B2

]
u(t1, t2) (1)

where xh(t1, t2) ∈ Rnh, xv(t1, t2) ∈ Rnv and u(t1, t2) ∈ Rm are the horizontal state, vertical state and input
of system, respectively, and A1, A2, A3, A4, B1 and B2, are real matrices with appropriate dimensions.
For real numbers t1 and t2, we introduce notations

Xh = sup
t2

‖ xh(0, t2) ‖, Xv = sup
t1

‖ xv(t1, 0) ‖ .

Assumption 1
lim

t1−→∞
‖ x(t1, 0) ‖= 0 and lim

t2−→∞
‖ x(0, t2) ‖= 0.

They are inferred to the initial condition for the system (1).

In the stability analysis of 2-D continuous system (1), it is required to consider the zeros of the 2-D characteristic
polynomial given by

C(s1, s2) = det

[
s1Inh −A1 −A2

−A3 s2Inv −A4

]
(2)

It is known in the literature that the 2-D continuous system is asymptotically stable if and only if C(s1, s2) 6= 0
∀(s1, s2): Re(s1) ≥ 0 and Re(s2) ≥ 0.
In general, this condition is difficult to use in practice to verify the stability, therefore, another method will be
used via LMI.

Lemma 1 Simple necessary conditions for asymptotic stability of the 2-D continuous system (1) are as
follows:
i) A1 is Hurwitz (i.e. all its eigenvalues have negative real parts, Reλi(A1) < 0; i = 1, .., nh).
ii) A4 is Hurwitz.

Proof From (1) for A2 = A3 = A4 = 0, we obtain the state equation of the continuous system ( for the
fixed 0 ≤ t2 ∈ R )

∂xh(t1, t2)

∂t1
= A1x

h(t1, t2) (3)

The system (3) is asymptotically stable if the matrix A1 is Hurwitz.
Similarly, we can proof ii). �

Therefore, we assume the following throughout the paper.

Assumption 2 The matrices A1 and A4 are Hurwitz.

Lemma 2 Let the assumption 2 be satisfied, the 2-D continuous system (1) is asymptotically stable if and
only if

S(s) = A3(sI −A1)−1A2 +A4, s = jω (4)

is Hurwitz matrix for ω ∈ R.

Stability and Robust Stabilization of 2-D Roesser Continuous Systems ... (Ismail Er Rachid)
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Proof Let u(t1, t2) = 0, and taking the Laplace transformation of system (1) for t1 only, and under zero
initial condition, we get [

sXh(s, t2)
∂Xv(s,t2)

∂t2

]
=

[
A1 A2

A3 A4

] [
Xh(s, t2)
Xv(s, t2)

]
(5)

Solving (5), we obtain
∂Xv(s, t2)

∂t2
= [A3(sI −A1)−1A2 +A4]Xv(s, t2) (6)

System (6) can be regarded as a 1-D continuous system with complex variable s, and we notice that the variable
t2 of the system doesn’t depend on the variable s. So the 1-D continuous system (6) is asymptotically stable if
and only if [A3(sI −A1)−1A2 +A4] is Hurwitz matrix for Re(s) = 0. Hence, the 2-D continuous system (1)
is asymptotically stable if and only if [A3(jωI −A1)−1A2 +A4] is Hurwitz matrix ∀w ∈ R. �

Remark 1 Notice that when interchanging A1 with A4, and A2 with A3, the 2-D continuous system (1) is
asymptotically stable if A2(jωI −A4)−1A3 +A1 is Hurwitz matrix ∀ω ∈ R.

We will use the following lemmas, known as the KYP lemma, the GKYP, and the Projection Lemma, respec-
tively.

Lemma 3 [12] Let matrices A, B, and Θ = ΘT be given, if det(jwI−A) 6= 0 ∀ω ∈ R. Then the following
two statements are equivalent.
(i) For any ω ∈ R ∪∞, [

(jwI −A)−1B
I

]∗
Θ

[
(jwI −A)−1B

I

]
< 0 (7)

(ii) There exists a symmetric matrix P such that[
A B
I 0

]∗ [
0 P
P 0

] [
A B
I 0

]
+ Θ < 0 (8)

Lemma 4 [14] Let the matrices Θ, F , Φ and Ψ be given, and denote Nω is the null space of TωF , where
Tω =

[
I −jωI

]
. The inequality

N∗ωΘNω < 0, with ω ∈ [ω1, ω2], (9)

holds if and only if there exist Q > 0 and a symmetric matrix P , such that

F ∗(Φ⊗ P + Ψ⊗Q)F + Θ < 0 (10)

where Φ =

[
0 1
1 0

]
, Ψ =

[
−1 jωc

−jωc −ω1ω2

]
, wc =

(ω1+ω2)
2

.

Lemma 5 [13] Given a symmetric matrix Σ ∈ Rp×p and two matrices X , Z of column dimension p, there
exists a matrix Y such that the LMI

Σ + symXTY Z < 0 (11)

holds if and only if the following two projection inequalities with respect to Y are satisfied:

X⊥
T

ΣX⊥ < 0, Z⊥
T

ΣZ⊥ < 0. (12)

where X⊥ and Z⊥ are arbitrary matrices whose columns form a basis of the null spaces of X and Z, respec-
tively.
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3. STABILITY ANALYSIS
we are now in a position to present a new condition for checking the stability of 2-D continuous

systems of Roesser model.

Lemma 6 The 2-D continuous system (1) is asymptotically stable if there exist P1 > 0 and P2 > 0 such
that the LMI

ATP + PA < 0 (13)

is feasible. Where P = diag{P1, P2} and A =

[
A1 A2

A3 A4

]
.

Proof LMI (13) can be rewritten as[
P1A1 +AT

1 P1 AT
3 P2 + P1A2

∗ P2A4 +AT
4 P2

]
< 0 (14)

and this latter LMI can be rewritten as[
A1 A2

I 0

]T [
0 P1

P1 0

] [
A1 A2

I 0

]
+ Θ < 0 (15)

where

Θ =

[
A3 A4

0 I

]T [
0 P2

P2 0

] [
A3 A4

0 I

]
(16)

by Lemma 3, (15) is equivalent to[
(jwI −A1)−1A2

I

]∗
Θ

[
(jwI −A1)−1A2

I

]
< 0,

or [
S(jω)
I

]∗ [
0 P2
P2 0

] [
S(jω)
I

]
< 0 (17)

where S(jw) is the frequency response matrix obtained from S(s) of Lemma 4, moreover, (17) can be written
as

S(jw)∗P2 + P2S(jw) < 0. (18)

and the existence of a P2 > 0 satisfying this last condition immediately implies that all eigenvalues of S(jω)
must have strictly negative real parts, ∀ω ∈ R ∪ ∞, that is, feasibility of (13) guarantees that condition of
Lemma 2 holds. Moreover, feasibility of (13) implies that

P1A1 +AT
1 P1 < 0, P2A4 +AT

4 P2 < 0,

and, since P1 > 0 and P2 > 0, all eigenvalues of the matrices A1 and A4 must have strictly negative real parts,
and feasibility of (13) guarantees that Lemma 1 and Lemma 2 are satisfied. �

Lemma 6 proposes an LMI condition for the asymptotical stability of the system in (1), there exists some
conservativeness due to the requirement of a constant matrix P2 for all ω ∈ R ∪ ∞, though. Following the
similar line of [18, 19, 20], the existence of P2(jω) > 0 such that

S(jw)∗P2(jw) + P2(jw)S(jw) < 0, ∀ω ∈ R ∪∞,

is a sufficient condition for asymptotical stability of the system (1). Based on this result, and in order to reduce
the conservativeness of Lemma 6, we attempt to obtain a piecewise constant matrices P2(jω) via a frequency-
partitioning appoach, over the entire frequency field.
Denote Ω = R ∪∞, and due to S(−jω) = S(jω)∗, the following identities hold:

sup
ω∈Ω

Reλ(S(jw)) = sup
ω∈Ω+

Reλ(S(jw)) = sup
ω∈Ω−

Reλ(S(jw)) (19)

Stability and Robust Stabilization of 2-D Roesser Continuous Systems ... (Ismail Er Rachid)
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where Ω+ = [0,∞], Ω− = [∞, 0]. Therefore, it suffices to consider the half frequency field Ω+. Now, for a
given positive integer N , dividing the frequency domain Ω+ into N intervals, such that

Ω+ =

N⋃
i=1

Ωi; Ωi = [wi−1, wi], ω0 = 0, ωN =∞, (20)

then applying the result of Lemma 4 on each interval, we obtain the following theorem.

Theorem 1 For a given positive integer N , define frequency intervals Ω+ as in (20). System (1) is asymp-
totically stable if there exist Psj > 0, j=1,2. P1i, P2i, Qi > 0, i = 1, 2, ..., N

ATPi + PiA+ FT (Ψi ⊗Qi)F < 0 (21)

AT
j×jPsj + PsjAj×j < 0, j = 1, 2. (22)

where A =

[
A1 A2

A3 A4

]
, F =

[
A1 A2

I 0

]
, and Pi = diag{P1i, P2i}.

For i = 2, 3, ..., N − 1,

Ψi =

[
−1 jwci

−jwci −wi−1wi

]
, with wci =

(wi−1 + wi)

2
. (23)

For i = 1 and i = N ,

Ψ1 =

[
−1 0
0 w2

1

]
and ΨN =

[
1 0
0 −w2

N−1

]
(24)

respectively.

Proof By Assumption 2, we have Reλ(A1) < 0 and Reλ(A4) < 0 if and only if there exist Ps1 > 0
and Ps1 > 0 such that AT

1 Ps1 + Ps1A1 < 0, AT
4 Ps2 + Ps2A4 < 0, LMIs in (22) are satisfied.

For i = 2, ..., N − 1, and {i = 1, i = N}, according to [14] the matrix Ψi should be taking as (23) and (24),
respectively. The condition in (21), can be written as

FT (Φ⊗ P1i + Ψi ⊗Qi)F + Θi < 0 (25)

where

Φ =

[
0 1
1 0

]
(26)

and

Θi =

[
A3 A4

0 I

]T
(Φ⊗ P2i)

[
A3 A4

0 I

]
(27)

Denote G(jω) = (jωI −A1)−1A2, and S(jω) = A4 +A3(jωI −A1)−1A2 = A3G(jω) +A4, by lemma 4,
the following inequality follows: [

G(jω)
I

]∗
Θi

[
G(jω)
I

]
< 0,∀ω ∈ Ω+ (28)

or [
S(jω)
I

]∗
(Φ⊗ P (l)

2 )

[
S(jω)
I

]
< 0, ∀ω ∈ Ω+ (29)

or in a more compact form

S(jω)∗P2i + P2iS(jω) < 0, P2i > 0, ∀ω ∈ Ω+ (30)

So Reλ(S(jω)) < 0 is finally guaranteed for all ω ∈ Ω+. Combining Reλ(A1) < 0, Reλ(A4) < 0 and
Reλ(S(jω)) < 0, we conclude that system (1) is asymptotically stable based on Lemma 2. The proof is
completed. �

IJPEDS Vol. 8, No. 3, September 2017: 990 – 1001
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Remark 2 When N = 1, and if letting Qi = 0, P1i > 0 and P2i > 0 be real, then (21) reduces to (13),
that is, Lemma 6 is a special case of Theorem 1.

Theorem 2 For a given positive integer N , define frequency intervals Ω+ as in (20). System (1) is asymp-
totically stable if there exist Psj > 0, j=1,2. P1i, P2i, Qi > 0, W1i, W2i, i = 2, 3, ..., N − 1, such that

Ξi =


Λ11i Λ12i 0 Λ14i

∗ Λ22i Λ23i Λ24i

∗ ∗ Λ33i Λ34i

∗ ∗ ∗ Λ44i

 < 0 (31)

Ξsji =

[
Λsj1i Λsj2i

∗ Λsj3i

]
< 0, j = 1, 2. (32)

Λ11i = −Qi −W1i −WT
1i ,

Λ12i = P1i + jwciQi −WT
1i +W1iA1,

Λ14i = W1iA2,
Λ22i = −wi−1wiQi +AT

1 W
T
1i +W1iA1,

Λ23i = AT
3 W

T
2i ,

Λ24i = AT
3 W

T
2i +W1iA2,

Λ33i = −W2i −WT
2i ,

Λ34i = P2i −WT
2i +W2iA4,

Λ44i = W2iA4 +AT
4 W

T
2i .

Λsj1i = −Wji −WT
ji ,

Λsj2i = Psj −WT
1i +WjiAj×j ,

Λsj3i = AT
j×jW

T
ji +WjiAj×j , j=1,2.

For i=1, we replace Λ11i, and Λ12i in (31) by
Λ121 = P11 −WT

11 +W11A1,
Λ221 = w2

1Q1 +AT
1 W

T
11 +W11A1, respectively.

For i=N, we replace Λ11i, Λ12i and Λ22i in (31) by
Λ11N = QN −W1N −WT

1N ,
Λ12N = P1N −WT

1N +W1NA1,
Λ22N = −w2

N−1QN +AT
1 W

T
1N +W1NA1, respectively.

Proof From Theorem 1, let

Σ =

[
Φ⊗ P1i + Ψi ⊗Qi 0

∗ Φ⊗ P2i

]
, (33)

According to [14], for i = 2, ..., N − 1, i = 1 and i = N , Ψi as in (23), (24), and Φ as in (26).

Let Y =


W1i 0
W1i 0

0 W2i

0 W2i

, Z =

[
−I A1 0 A2

0 A3 −I A4

]
, X = I , (31) is equivalent to

sym(XTY Z) + Σ < 0 (34)

since one can choose X⊥ = 0, the first inequality in (12) vanishes, and then by lemma 5, (34) hold for some Y

if and only if Z⊥T
ΣZ⊥ < 0. Note that Z⊥ can be selected as Z⊥ =


A1 A2

I 0
A3 A4

0 I

, and then by calculation, we

can obtain the equivalence between Z⊥
T

ΣZ⊥ < 0 and (21). Consequently (21) is equivalent to (31).
In addition from (22), we get [

Aj×j

I

]T [
0 Psj

Psj 0

] [
Aj×j

I

]
< 0, j = 1, 2. (35)

Stability and Robust Stabilization of 2-D Roesser Continuous Systems ... (Ismail Er Rachid)
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Figure 1: Reλmax(S(jω)) and γ∗i

The equivalence between (35) and (32) can be similarly found by re-introducing

Σ =

[
0 Psj

Psj 0

]
, Y =

[
Wji

Wji

]
, Z =

[
−I Aj×j

]
, X = I , j=1,2. Thus, Theorem 2 is equivalent to

Theorem 1. �

Example 1 In this part, we provide an example to illustrate the application of the proposed method.
consider system in (1), where the matrices in the system are obtained by a suitable transformation from the original system
matrices [21]:

Ac =

[
A1 A2

A3 A4

]
= (Ad − 1)(Ad + 1)−1

The matrices in the original problem are as the following form [18]:

Ad =

[
Ad1 Ad2

Ad3 Ad4

]
, Ad1 =

[
0.5 0.5
0.1 −0.1

]
, Ad2 =

[
0.4 1.1
0.6 0.1

]
, Ad3 =

[
−0.1 −0.1
−0.2 0.6

]
,

Ad4 =

[
−0.5 −0.5
−0.1 −0.7

]
.

we obtain

A1 =

[
5.2979 −16.0426
4.2128 −12.7447

]
, A2 =

[
20.5957 23.9149
16.4255 16.5106

]
, A3 =

[
−5.7872 16.2553
−7.4894 22.2128

]
,

A4 =

[
−22.5745 −23.4894
−26.9787 −30.5745

]
.

Denote γ∗i as the minimum value of −γi that satisfies

sup
ω∈Ωi

Reλmax(S(jω)) < −γi < 0

γ∗i could be computed from (31) by replacing Φ ⊗ P2i in (33) by
[

0 P2i

P2i γi

]
and minimizing −γi. Figure 1 shows

Reλmax(S(jω)) and the executed γ∗i by Theorem 2 with N = 1, 2, 4, 8. The stability of the above system is verified, since
Re(λmax(S(jω))) < 0 is evident. With N growing, It is further shown that −γi tends to the value of Reλmax(S(jω))
over Ω+.

Theorem 2 withN = 1 fails to decide the stability of the above system. By increasingN , it is found that Theorem
2 with N = 2, 4, 8 succeeds, note that, the above system is asymptotically stable only for i = 2, ..., N . But for i = 1,
whatever N , and whatever the way of partitioning the entire interval, always system is not stable. This is due to the rapid

IJPEDS Vol. 8, No. 3, September 2017: 990 – 1001
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variation of the curve of Reλmax(S(jω)) in the vicinity of ω0 = 0.

Remark 3 In the following domain [16,+∞],Reλmax(S(jω)) remains relatively stationary to the valueReλmax(S(j∞)) =
Reλmax(A4) = −1.0850, then γ∗i also tends to this value throughout the domain. Even if it decomposed, we find very
similar values to −1.0850. That’s why we worked on just the domain [0, 16] (Figure 1).

4. CONTROL LAW DESIGN
In this section, Theorem 2 is further developed for state-feedback control of the uncertain 2-D continuous sys-

tems.
Consider a 2-D continuous system of Roesser model with norm-bounded uncertainty:[

∂xh(t1,t2)
∂t1

∂xv(t1,t2)
∂t2

]
=

[
A1 + ∆A1 A2 + ∆A2

A3 + ∆A3 A4 + ∆A4

] [
xh(t1, t2)
xv(t1, t2)

]
+

[
B1 + ∆B1

B2 + ∆B2

]
u(t1, t2) (36)

where the uncertain matrices ∆Aq , q = 1, 2, 3, 4 and ∆Bp, p = 1, 2 formed as[
∆A1 ∆A2 ∆B1

]
= H1∆

[
E1 E2 L1

]
[

∆A3 ∆A4 ∆B2

]
= H2∆

[
E3 E4 L2

] (37)

where H1, H2, E1, E2, E3, E4, L1 and L2 are known constant matrices, ∆ is norm-bounded parameter uncertainty satis-
fying ∆T ∆ ≤ I . Suppose the system (36) is controlled by a state-feedback controller:

u(t1, t2) =
[
K1 K2

] [ xh(t1, t2)
xv(t1, t2)

]
(38)

where K1 and K2 are the controller gains to be found, then the closed-loop system is given by:[
∂xh(t1,t2)

∂t1
∂xv(t1,t2)

∂t2

]
=

[
Ac1 + ∆Ac1 Ac2 + ∆Ac2

Ac3 + ∆Ac3 Ac4 + ∆Ac4

] [
xh(t1, t2)
xv(t1, t2)

]
(39)

where
Ac1 = A1 +B1K1, Ac2 = A2 +B1K2, Ac3 = A3 +B2K1, Ac4 = A4 +B2K2,
∆Ac1 = ∆A1 + ∆B1K1, ∆Ac2 = ∆A2 + ∆B1K2, ∆Ac3 = ∆A3 + ∆B2K1, ∆Ac4 = ∆A4 + ∆B2K2.
Our objective is to find a state-feedback controller in (38) for the system (36) such that the closed-loop system (39) is
asymptotically stable for all possible uncertainties. Before we proceed, the following lemma which is usually used in the
robust control of systems will be given first.

Lemma 7 [22] Let Σ1,Σ2 and ∆ be real matrices with appropriate dimensions such that ∆T ∆ ≤ I . Then, for any
scalar ε > 0 the following inequality holds:

Σ1∆Σ2 + ΣT
2 ∆T ΣT

1 ≤ ε−1Σ1ΣT
1 + εΣT

2 Σ2 (40)

Now, based on Theorem 2, we have the following analysis result on robust stabilization of the 2-D continuous system (39).

Proposition 1 For a given positive integer N , define frequency intervals Ω+ as in (20). System (39) is asymptoti-
cally stable for all ∆ satisfying ∆T ∆ ≤ I , if there exist matrices Psj > 0, j = 1, 2. Ps2 > 0, P1i, P2i, Qi > 0, W1, W2,
and scalars εi > 0, i = 1, 2, ..., N , such that

Ξ =

[
Ξ1 Ξ2

∗ Ξ3

]
< 0 (41)

Ξsj =

[
Ξsj1 Ξsj2

∗ Ξsj3

]
< 0, j = 1, 2. (42)

Ξ1 =


Λ11 Λ12 0 Λ14

∗ Λ22 Λ23 Λ24

∗ ∗ Λ33 Λ34

∗ ∗ ∗ Λ44

, Ξ2 =
[

Υ1 εiΥ2

]
, Ξ3 = diag{−εiI,−εiI,−εiI,−εiI}.

Λ11 = −Qi −W1 −WT
1 ,

Λ12 = P1i + jωciQi −WT
1 +W1Ac1,

Λ14 = W1Ac2,
Λ22 = −ωi−1ωiQi +AT

c1W
T
1 +W1Ac1,
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Λ23 = AT
c3W

T
2 ,

Λ24 = AT
c3W

T
2 +W1Ac2,

Λ33 = −W2 −WT
2 ,

Λ34 = P2i −WT
2 +W2Ac4,

Λ44 = W2Ac4 +AT
c4W

T
2 .

Υ1 =


W1H1 0
W1H1 0

0 W2H2

0 W2H2

, Υ2 =


0 0

(E1 + L1K1)T (E3 + L2K1)T

0 0
(E2 + L1K2)T (E4 + L2K2)T

,

Ξsj1 =

[
Λsj1 Λsj2

∗ Λsj3

]
, Ξsj2 =

[
Υsj1 εiΥsj2

]
, Ξsj3 = diag{−εiI,−εiI}.

Λsj1 = −Wj −WT
j ,

Λsj2 = Psj −WT
j +WjAcj×j ,

Λsj3 = AT
cj×jW

T
j +WjAcj×j ,

Υsj1 =

[
WjHj

WjHj

]
, Υsj2 =

[
0

(Ej×j + LjKj)
T

]
, j = 1, 2.

Proof From Theorem 2, by replacing W1i and W2i with W1 and W2 respectively. System (39) is asymptotically
stable if there exist Psj > 0, j = 1, 2. P1i, P2i,Qi > 0 such that inequalities in (31) and (32) satisfied, in whichAq should
be Acq + ∆Acq for q = 1, 2, 3, 4. The above LMIs can be re-written into the following form:

Ξ1 + Υ1∆ΥT
2 + Υ2∆T ΥT

1 < 0. (43)

Ξsj1 + Υsj1∆ΥT
sj2 + Υsj2∆T ΥT

sj1 < 0. j = 1, 2. (44)

According to Lemma 7, the above inequalities holds for all ∆ if and only if there exist some scalars εi > 0 such that

Ξ1 + ε−1
i Υ1ΥT

1 + εiΥ2ΥT
2 < 0 (45)

Ξsj1 + ε−1
i Υsj1ΥT

sj1 + εiΥsj2ΥT
sj2 < 0 (46)

which, by the Schur complement in [23], (45) and (46) give rise to (41) and (42). �

Remark 4 It is interesting to note that, as the LMIs including their proofs for i = 1 and i = N are similar to those
for cases of i = 2, ..., N − 1, we give these Proposition 1 in one unified form for all possible value of i for reason of space.
The same expression applies to the following Theorem 3.

Now, based on Proposition 1, we are in a position to give a new method of state-feedback stabilization controller design for
the Reosser model.

Theorem 3 For a given positive integer N , define frequency intervals Ω+ as in (20). System (39) is asymptotically
stable for all ∆ satisfying ∆T ∆ ≤ I , by a state feedback controller in (38), if there exist matrices P̃sj > 0, j = 1, 2. P̃1i,
P̃2i, Q̃i > 0, W̃1, W̃2, N1, N2 and scalars δi > 0, i = 1, 2, ..., N , such that

Ξ̃ =

[
Ξ̃1 Ξ̃2

∗ Ξ̃3

]
< 0 (47)

Ξ̃sj =

[
Ξ̃sj1 Ξ̃sj2

∗ Ξ̃sj3

]
< 0 (48)

Ξ̃1 =


Λ̃11 Λ̃12 0 Λ̃14

∗ Λ̃22 Λ̃23 Λ̃24

∗ ∗ Λ̃33 Λ̃34

∗ ∗ ∗ Λ̃44

 , Ξ̃2 =
[
δiΥ̃1 Υ̃2

]
, Ξ̃3 = diag{−δiI,−δiI,−δiI,−δiI}

Λ̃11 = −Q̃i − W̃1 − W̃T
1 ,

Λ̃12 = P̃1i + jωcQ̃i − W̃1 +A1W̃
T
1 +B1N1,

Λ̃14 = A2W̃
T
2 +B1N2,

Λ̃22 = −ωi−1ωiQ̃i + W̃1A
T
1 +A1W̃

T
1 +B1N1 +NT

1 B
T
1 ,

Λ̃23 = W̃1A
T
3 +NT

1 B
T
2 ,

Λ̃24 = A2W̃
T
2 + W̃1A

T
3 +NT

1 B
T
2 +B1N2,

Λ̃33 = −W̃2 − W̃T
2 ,

Λ̃34 = P̃2i − W̃2 +A4W̃
T
2 +B2N2,
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Figure 2: Closed-loop responses of xh1 (t1, t2) and xv1(t1, t2).

Λ̃44 = A4W̃
T
2 +B2N2 + W̃2A

T
4 +NT

2 B2.

Υ̃1 =


H1 0
H1 0
0 H2

0 H2

 , Υ̃2 =


0 0

W̃1E
T
1 +NT

1 L
T
1 W̃1E

T
3 +NT

1 L
T
1

0 0

W̃2E
T
2 +NT

2 L
T
1 W̃2E

T
4 +NT

2 L
T
2 }

.

Ξ̃sj1 =

[
Λ̃sj1 Λ̃sj2

∗ Λ̃sj3

]
, Ξ̃sj2 =

[
δiΥ̃sj1 Υ̃sj2

]
, Ξ̃sj3 = diag{−δiI,−δiI},

Λ̃sj1 = −W̃j − W̃T
j ,

Λ̃sj2 = P̃sj − W̃j +Aj×jW̃
T
j +BjNj ,

Λ̃sj3 = W̃jA
T
j×j +Aj×jW̃

T
j +BjNj +NT

j B
T
j ,

Υ̃sj1 =

[
Hj

Hj

]
, Υ̃sj2 =

[
0

W̃jE
T
j×j +NT

j L
T
j

]
, j = 1, 2.

If the above conditions are satisfied, a stabilizing control law
[
K1 K2

]
is given by

K1 = N1W̃
−T
1 , K2 = N2W̃

−T
2 .

Proof If (42) holds, W1 and W2 are nonsingular. Pre-and post-multiplying (41) by nonsingular matrices:
diag{W−1

1 ,W−1
1 ,W−1

2 ,W−1
2 , ε−1

i I, ε−1
i I, ε−1

i I, ε−1
i I} and diag{W−T

1 ,W−T
1 ,W−T

2 ,W−T
2 , ε−T

i I, ε−T
i I, ε−T

i I, ε−T
i I},

and Pre-and post-multiplying (42) by nonsingular matrices:
diag{W−1

j ,W−1
j , ε−1

i I, ε−1
i I} and diag{W−T

j ,W−T
j , ε−T

i I, ε−T
i I}, j = 1, 2.

Making change of variables as follows:
W̃1 = W−1

1 , W̃2 = W−1
2 , δi = ε−1

i , Q̃i = W̃1QiW̃
T
1 , P̃1i = W̃1P1iW̃

T
1 , P̃2i = W̃2P2iW̃

T
2 ,

P̃s1 = W̃1Ps1W̃
T
1 , P̃s2 = W̃2Ps2W̃

T
2 .

We can obtain the equivalence between Theorem 3 and Proposition 1, where
N1 = K1W̃

T
1 , N2 = K2W̃

T
2 . �

In the following, we provide an example to demonstrate the effectiveness of the proposed method in this section.

Example 2 Consider the uncertain 2-D continuous system in (39) with parameters given by: [11]

A1 =

 −1.2 0.3 −0.7
−1 0.5 0.6
0 0.2 −1.8

, A2 =

 −0.7 0.2
0.5 1
−0.5 0

, A3 =

[
0.9 0 −1.5
0 0.2 0.1

]
, A4 =

[
−0.8 0.2
0.1 0.6

]
,

B1 =

 −0.3 −0.1 0.5
1 0.5 0
1 0.2 0.6

, B2 =

[
−1 0.3 0.2
1 −0.6 0.5

]
, H1 =

 0.1
0
−0.2

, H2 =

[
0.1
0

]
,

E1 =
[

0.1 0 0.2
]
, E2 =

[
0.1 −0.2

]
, L1 =

[
0.1 −0.2 0

]
, E3 = E1, E4 = E2, L2 = L1.

Because the eigenvalues of matrices A1 and A4 contain positive eigenvalues given by 0.4072 and 0.6141, re-
spectively. Therefore, the nominal 2D continuous system under consideration is not asymptotically stable. The aim of
this example is to design a frequency-partitioning state feed-back controller such that the resulting closed-loop system is
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asymptotically stable for all admissible uncertainties. By application of Theorem 3 on 2-D contunuous Roesser model, we
obtain the state feedback controller parameters as results:

K1 =

 0.3643 −0.2418 −0.5541
0.1982 −0.2928 1.0384
0.2830 −0.6519 2.4311

 , K2 =

 −0.1881 −0.5412
0.3719 1.3484
0.1270 −1.8949

 (49)

To show the asymptotic stability via the state-feedback control in (38) with (47,48), the state evolution of xh(t1, t2) and
xv(t1, t2) of the closed-loop system in (39) are depicted in Figure 2. For simulations, assume that ω(t1, t2) = 0 and let
the initial and boundary conditions to be:

xh(0, t2) = 0.2; 0 ≤ t2 ≤ 10
xv(t1, 0) = 0.2; 0 ≤ t1 ≤ 10

xh(0, t2) = xv(t1, 0) = 0; t1, t2 > 10.

The simulation results show that the closed-loop system in (39) is asymptotically stable.

5. CONCLUSIONS
This paper has been tackled the stability and robust stabilization problem of 2-D continuous Roesser systems.

The proposed conditions of the system’s stability has been provided in terms of LMIs. Furthermore, GKYP lemma com-
bined with frequency-partitioning approach is used to reduce the conservativeness. Robust stabilization using static state
feedback has been studied as well, and the stabilizing feedback gain matrices have been constructed based on the solutions
of certain LMIs. Finally, numerical examples demonstrate that the proposed methods are effective.
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