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 This paper is intended to study and compare the operation of two methods for 

estimating the position/ speed of the permanent magnet synchronous motor 

(PMSM) under sliding mode control. The first method is a model reference 

adaptive system (MRAS). The second method based on sliding mode 

observer (SMO). The stability condition of Sliding Mode Observer was 

verified using the Lyapunov method to make sure that the observer is stable 

in converging to the sliding mode plane. In this paper the performances of 

the proposed two algorithms are analyzed using SIMULINK/MATLAB. The 

simulations results are presented to verify the proposed sensorless control 

algorithms and can resolve the problem of load disturbance effects by 

simulations which verify that the two closed-loop control system is robust 

with respect to torque disturbance rejection. 
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1. INTRODUCTION 

The permanent magnet synchronous motors attract the industrial world attention thanks to their 

superior advantages, for instance their higher efficiency, low inertia, high torque to current ratio. As an 

important application of PMSM, the motion control requires not only the accurate knowledge of rotor 

position for field orientation but also the information of rotor speed for closed-loop control; thus, position 

transducers such as optical encoders and resolvers are needed to be installed on the shaft [1],[2]. However, 

these sensors are expensive and very sensitive to environmental constraints such as vibration and temperature 

[3]. In order to overcome these problems, instead of using position sensors, a sensorless control method has 

been developed for control of the motor [4]. The basic principle of sensorless control is to deduce the rotor 

speed and position using various information and means, including direct calculation, parameter 

identification, condition estimation, indirect measuring and so on. The stator currents and voltages are 

generally used to calculate the information of speed and rotor position [5]. 

The sliding mode control has been used to improve the robustness of the controller. during the 

sliding mode, this controller is insensitive to parameter variations and disturbances [6]. Therefore, many 

approaches for speed estimation have been investigated in the literature [7]-[8]. 

This paper presents two methods for estimating the position and speed of a permanent magnet 

synchronous motor (PMSM) drive. The first method is Model Reference Adaptive System. It makes use of 

the redundancy of two machine models of different structures that estimate the same state variable (rotor 

speed) of different set of input variables [9]. The estimator that does not involve the quantity to be estimated 

is chosen as the reference model, and the other estimator may be regarded as the adjustable model. The error 

between the estimated quantities obtained by the two models is proportional to the angular displacement 

between the two estimated flux vectors. A PI adaptive mechanism is used to give the estimated  
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speed [10]-[11]. The second method is Sliding Mode Observer, which is robust and easy to implement. The 

siding mode observer is built based on the mathematical model of PMSM under α-β coordinate system [11]. 

The performance of the proposed controller in verified by computer simulations. 

 

 

2. THE PMSM NONLINEAR STATE MODEL 
Considering the traditional simplifying assumptions, the synchronous permanent magnet machine 

can be elaborated by carrying out a modeling within the meaning of Park. The machine model in the turning 
dysphasic reference (d-q) is written [12]-[13]: 
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Usually, this model (1) is used for the vector control design whereas, for the observer design, the model will 

be written in stationary reference frame frame (-) as the speed and the position information are ready to be 

extracted in this reference frame [6],[14]. Then the model can be written as follows: 
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3. SLIDING MODE CONTROL OF PMSM 

3.1. Design of the Sliding Mode Control (SMC) 

The design of the SMC takes into account the problems of stability and good performance in a 

systematic way in its approach [9],[15]. In general, for this type of control, three steps must be performed:  

Chose the sliding surface, Determination of existence conditions plan or slippery conditions of access, 

Synthesis control laws of sliding mode. 

 

3.2. The Speed Control of PMSM 

Adjusting the speed of PMSM requires monitoring the current consumed by the motor. A 

conventional solution is to use the principle of cascade control method of the inner loop enables the current 

control, of the outer loop to control the speed [8],[9]. The first surface speed that is written by: 
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with:                              Thus, the control isqref represents the sum of magnitudes isqeq and isqn: )).((   SsignKisqn
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sqnsqeqsqref iii 
 (6)

 

 

3.3. The Current Control of PMSM 

The second surface of the inner loop accountable for controlling the current isq is described by: 
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The derivative of the surface is given by: 
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During the sliding mode and the steady state, we have: 
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with:                                              Thus, the control Vsqref represents the sum of magnitudes Vsqeq and Vsqn: 
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The third surface is that of the current control isd. It is described by: 
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During the sliding mode and the steady state, we have: 
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4. MRAS SENSORLESS SPEED CONTROL 

In this method there is a reference model and an adjustable model. The first model is used to 

determine the required states and the second model is an adaptive model which is used to provide the 

estimated values of the states [16]-[17]. The difference between the output of these two models are fed to an 

adaptation mechanism to estimate the adjustable parameters that tunes the adaptive model in such a way that 

drives the error between these two models to zero Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

Figure 1. Structure MRAS for the estimate speed 

 

 

The state space d-q axis stator currents of PMSM designed as reference model is given by:  
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The state space d-q axis stator currents of PMSM designed as adjustable model is given by:  
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After developing adjustable and reference models, the adaptation mechanism will be built for MRAS method. 

The adaptation mechanism is designed in a way to generate the value of estimated speed used so to minimize 

the error between the estimated and reference d-q axis stator currents. The error between the estimated and 

reference d-q axis stator currents are defined as:  
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The state currents error component is:  
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Using Equation (20), the state error model of the PMSM in the d-q synchronous reference frame is given as 

flow:   
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Where    Tqd   is the error state vector, 
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W is the output vector of the feedback block. 

 

The mechanical time constant is too much bigger than the electrical time constant, hence the 

mechanism is nonlinear time varying feedback [18]-[19]

of the linear feed forward block whose transfer function is H(S)=(S[I]-A])
-1

. For stability of MRAS there are 

two conditions, the first: H(S) must be always strictly positive real [20], the second: the nonlinear time 

varying block must fulfil Popov’s hyper stability criterion [21]. The first condition can be achieved by 

making sure that all the poles of H(S) have negative real parts. The second condition can be achieved by: 
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1.  

By using the Popov’s theory, the system of the MRAS speed estimation is asymptotically stable. 

Finally, from (21), we can conclude that the observed rotor speed satisfiers the following adaptation laws:  
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A PI adaptive mechanism is used to give the estimated speed. As the error signal gets minimized by the PI. 

The rotor estimated speed is generated from the adaptation mechanism using the error between the estimated 

and reference currents obtained by the model as follows: 
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Finally, the estimated rotor position is obtained by integrating the estimated rotor speed. 
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5. SENSORLESS SPEED CONTROL ASSOCIATED WITH SLIDING MODE OBSERVER(SMO) 

The sliding mode observer is based on a stator current estimator as the stator currents and voltages 

are the only measured states in a PMSM drive system [14],[22]-[23]. Then a sliding mode observer can be 

designed as follows: 

 

 






































)()(

)()cos(

)()sin(

2

1

1



















ss
rem

s
s

s

s

f
s

s

s
s

s
s

s

s

f
s

s

s
s

isignisignK
J

FCC

isignK
L

V

L

P
i

L

R
i

isignK
L

V

L

P
i

L

R
i

 (26)

 

 

With:                                                     and K1, K2 are the observer gains.  The Equations of dynamic errors 

are: 
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The analysis of the observer convergence will be carried out using the following Lyapunov function: 
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max2)sin()sin( 



 (30) 

 

max2iii ss  
 (31) 
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thus, the gains will be tuned such as: 

 

max1 4
s

f

L

P
K



 (33) 

 

max2 2iK 
 (34)

 

 

Based on analysis of the aspects mentioned above, Figure 2 shows the block diagram of the 

sensorless control of PMSM. We take uias input of the Sliding Mode Observer and udqidqas input of 

the Model Reference Adaptive System.  

 

 

 
 

Figure 2.  Block diagram of Sensorless Vector Control of PMSM 

 

 

6. SIMULATIONS RESULTS 
To demonstrate the performance of the proposed control scheme, a set of simulations is carried out 

on a PMSM model by using SIMULINK/MATLAB. The parameters of the tested PMSM are given in  
Table 1. In this section, the speed setting is treated with the sliding mode control mode associated with the 
PMSM two Observers Sliding Mode Observer, Model Reference Adaptive System powered by a voltage 
inverter with PWM control. The speed reference trajectory is given by the following benchmark: (0, +100, -
100, 0) rad/s. 

Figure 3 and 4 show all sizes estimated by two observers (SMO, MRAS). It is found that the 
estimated values show a transient without overshoot. We note that the response of the estimated speed is 
similar to that measured following the reference speed with almost zero error and validated the robustness of 
the sensorless Sliding Mode Control associated with the two observers. 
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Figure 5 and 6 show an observation error between the actual speed and the estimated speed. We can 
see that the estimation error is very small. This result attests the good estimation on the speed. The sliding 
Mode Observer has superiority and gives the best performance and robustness at the startup overshoot and 
overshoot of the load application relative to the MRAS observer as shown in Table 2. The currents in the 
sliding control show a good response time  according to the d and q axes currents references with or without 
load as shown in Figure 7. It illustrates the performance and the robustness of the control sensorless sliding 
mode with these observers. 

 
 

Table 1. Parameters of the Motor 
Components Values Units 

C n  5  Nm  

 n  1 0 0 0  t r /min  

R s  1 . 6 7  Ω  

L s  1 . 4 5  mH  

P  3  - - - - -  

 f  0 . 1 7  Wb  

J  3 .1 0 - 4  Kg.m 2  

F  0 .0 1 3  Nm/ rad / s  

 

 

Table 1. Summary of proposed control simulation performance  
Observers Dd (%) Tr      (ms) Tm   (ms) Es (%) Dp (%) Tp  (ms) 

MRAS 0.018 50,03 40,1 0 0.45 2 

SMO 0.007 50,04 40,1 0 0,34 1,2 

 

Dd (%) 

 

The overshoot at startup 

Dp (%) The overshoot for load application 

Tr (ms) The response time  

Tm (ms) The rise time 

Es (%) The static error 

Tp (ms) The load rejection time 

Vsd, Vsq Stator winding d, q axis voltage respectively 

isd, isq Stator winding d, q axis current respectively 

isd
*
, isq

*
 Reference stator winding d, q axis current respectively 

  The electric rotor speed  

*  Reference rotor speed    



  
Estimated rotor speed 

  Rotor position 

f  Permanent Magnet Flux 

sR  Stator phase resistance   

Lsd, Lsq The stator inductances of the axis d, q 

J Inertia of turning parts 

F Viscous friction coefficient 

P Poles pairs number 

Cr Load torque 
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Figure 1. The rotational speed (Real, Estimated, Reference) in the control sliding mode based on MRAS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 2. The rotational speed (Real, Estimated, Reference) in the control sliding mode based on SMO 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 5. a) Observed speed error, b) Tracking speed error in the control sliding mode based on MRAS 
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Figure 6. a) Observed speed error b) Tracking speed error in the control sliding mode based on SMO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Simulation results: measured isq, measured isd, measured phase stator current 

 

 

7. CONCLUSION 

A robust control sensorless of a permanent magnet synchronous motor is presented. The simulation 

results obtained in this work confirm its feasibility and validate excellent dynamic performance. The results 

show a good estimation under different operating conditions and low sensitivity to external disturbances they 

allowed us to get rid of especially mechanical speed sensor or position, which is expensive and fragile. 

Concluded against that both Sliding Mode Observer and Model Reference Adaptive System are simple to 

implement, don't take into account the measurement noise or the environment. They not require a long 

calculation time, and have a good dynamic response speed and good disturbance rejection; they show a 

response time and efficient robustness. According to the simulation results the Sliding Mode Observer has a 

superiority and gives the best performance and robustness relative to the Model Reference Adaptive System 

of sensorless sliding mode control in terms of low speed behavior, speed reversion and load rejection. 

Therefore, future work will focus on experimental validation using test bench to verify the proposed 

methods. 
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