A Simplified Space Vector Pulse Width Modulation Method Including Over Modulation Operation for Five Level Cascaded H-bridge Inverter with FPGA Implementation

Bogimi Sirisha, P. Satish Kumar

Department of Electrical Engineering, Osmania University, Hyderabad, India

Article InfoABSTRACTArticle history:This paper presents simplified control strategy of Space Vector Pulse Width
Modulation method including over modulation region with linear transfer
characteristic for cascaded H-bridge inverters. Because of large number of
article inverters and the pride inverter the our modulationRevised Jul 26, 2017and the pride inverters are our modulation

Received May 26, 2017 Revised Jul 26, 2017 Accepted Aug 12, 2017

Keyword:

Cascaded H-Bridge inverter FPGA Induction motor Over modulation Space vector modulation Modulation method including over modulation region with linear transfer characteristic for cascaded H-bridge inverters. Because of large number of switching states of the cascaded H- Bridge inverter, the over modulation operation is very complex. And also requires incorporation of both under modulation and over modulation algorithms. The proposed control method is effective in terms of selecting the optimal switching states with reduced computational complexity using simplified linear calculations which makes it easier for digital implementation. The performance of the proposed method is simulated and tested experimentally through Spartan 3A FPGA processor for five level Cascaded H-bridge Inverter. The simulation results and harmonic analysis of voltage and current at various modulation indexes as are presented which are in well agreement.

> Copyright © 2017 Institute of Advanced Engineering and Science. All rights reserved.

Corresponding Author:

Bogimi Sirisha, Department of Electrical Engineering, Osmania University, Hyderabad, India. Email: sirishab2007@yahoo.com

1. INTRODUCTION

Multilevel inverters are used as an alternate choice for high power medium voltage applications, The unique feature of these topologies that they can reach high voltage levels with minimum harmonics without the need of transformers which makes them a alternative choice for high power applications and FACTS [1]. Due to their ability of synthesizing the waveforms with good harmonic spectrum with fast response with autonomous control by which the power quality problems are reduced and dynamic behavior is improved they are extensively used in industrial drive applications. The various multilevel inverter topologies such as Cascaded H-Bridge Inverter with separate dc sources, Neutral point clamped Inverter, Flying Capacitor are being used in various applications [2]. Among various Pulse Width Modulation techniques for controlling the inverter output voltage, proposed is the literature [3]-[10], SVM method has greater flexibility of selecting switching states and their pattern design makes them suitable for digital implementation. Many of the SVPWM algorithms presented in the literature requires the extensive computation of switching patterns, with many algebraic equations in every sector which makes the SVPWM method complex. The main objective of this paper is to design a simplified SVPWM method with optimal switching states for linear and over-modulation regions. Operation in over modulation region is very much required in medium-voltage applications. Since it gives the effective utilization of dc bus thus minimizing the cost of the overall system [11]. This paper presents simplified SVPWM method including over modulation operation implemented experimentally for five level cascaded H-Bridge inverter with FPGA processor. The performance of the method both linear and over modulation regions are analyzed.

1204 🗖

2. CASCADED H-BRIDGE INVERTER

The basic structure of five level Cascade H-bridge multilevel inverter is shown in Figure 1. Each H-Bridge inverter uses dc link voltage to generate a modulated voltage at output terminals. The total output voltage is sum of each individual inverter module output voltage. Each H-Bridge inverter module will produce three output voltage levels. $+V_{dc}$, 0, $-V_{dc}$. For higher level several units of H bridge inverter modules

are connected in series. The number of H Bridges required for 'L' level is $N = \frac{L-1}{2}$. The number of voltage levels in a phase voltage V_{ph} with 'N' number of H-Bridges is 2N+1. Table 1 shows the gate switching for single phase five level cascaded multilevel inverter.

Figure 1. Three Phase five level Cascaded H-Bridge Inverter

Output Voltage	S_1	s_1^1	S_2	s_2^1	S ₃	s_3^1	S_4	s_4^1
+2Vdc	1	0	0	1	1	0	0	1
+Vdc	1	0	0	1	0	1	0	1
0	1	0	0	1	0	1	1	0
-Vdc	0	1	1	0	0	1	0	1
-2Vdc	0	1	1	0	0	1	1	0

Table 1. Gate Switching for five level CHB Inverter

3. SPACE VECTOR PULSE WIDTH MODULATION METHOD

Space Vector PWM relies on the representation of the inverter output voltage as space vectors. The space vector diagram of three phase inverter is a Hexagon with six sectors. Considering the geometrical characteristic that the angle between basic space vectors of 3-level inverter is all 60° , using a non orthogonal 60° reference frame, the synthesis of reference vector and dwell time calculation becomes less computational. Therefore the orthogonal system is transformed into 60° co-ordinate system. Components of reference vector along 60° axes

$$V_{\rm RM} = V_{\rm ref} \left(n-1 \right) * \cos\left(\frac{\pi}{3} - \alpha\right) - \sin\left(\frac{\pi}{3} - \alpha\right) / \sqrt{3}$$
(1)

$$V_{\rm RN} = V_{\rm ref} (n-1) * \cos\alpha - \sin\alpha / \sqrt{3}$$
⁽²⁾

 $m = floor (V_{RM})$ (3)

$$n = floor(V_{RN})$$
 (4)

Where m and n are defined by vector (m, n) in m^{1} - n^{1} axis

Figure 2. Location of reference vector and identification of triangle in 60° axis

The reference voltage in a sector is synthesized by using V_1 , V_2 , V_0 applied for the time T_1 , T_2 , T_0 .In the proposed technique the reference vector is synthesized in non orthogonal 60[°] reference frame. If $V_{ref} \leq (m+n+1)$ then V_{ref} is located in ΔABD else ΔCBD . After identifying the triangle where the reference vector is located, the dwelling times are calculated using the Equations 5, 6and 7 where (m_1, n_1) (m_2, n_2) and (m_3, n_3) are the vertices of triangle where the reference vector lies then

$$m_1 T_B + m_2 T_D + m_3 T_A = T_S$$
(5)

$$n_1 T_B + n_2 T_D + n_3 T_A = T_S$$
 (6)

$$T_{\rm B} + T_{\rm D} + T_{\rm A} = T_{\rm S} \tag{7}$$

Where T_B , T_D , T_A are dwell times of vector V_B , V_D , V_A

3.1. Over modulation-Operation

For the value of m higher than 0.866 the operating region is considered as over modulation region.

Figure 3. Over modulation regions(Zone-I & Zone-II) in space vector modulation

In the linear modulation region ($m_i \le 0.866$) the trajectory of the reference vector is a circle inscribed inside the hexagon with maximum sinusoidal output voltage. In the over modulation region ($0.866 \le m_i \le 0.953$) the trajectory of the reference vector crosses the hexagonal track which is shown identified by the cross over angle. In the over modulation region its magnitude of the reference vector is modified through multiplication of decomposition vectors with the voltage reduction factor given as.

A Simplified Space Vector Pulse Width Modulation Method Including Over Modulation (Bogimi Sirisha)

$$q = (n-1)/V_{RM} + V_{RN}$$
(8)

The modified reference vector is calculated by the equations (9) and (10) this modified vector in called distorted continuous reference voltage space vector, in which the angle remains the same.

$$V_{RM} = q(V_{RM}) \tag{9}$$

$$V_{RN} = q(V_{RN}) \tag{10}$$

In circular track region ON-times are modified and given by equation (11)

$$[T_1, T_2, T_3] = q \ [T_1, T_2, T_3]$$
(11)

The loss in volts-seconds during hexagonal region is compensated by gain in volts-seconds during circular track region. For the over modulation zone- II (0.953 < m < 1), the magnitude of the reference vector is modified to compensate for the loss in fundamental voltage in the hexagonal track region. Else the reference is held at two large vectors sequentially for the time period till $\theta < \theta_c$ and $\theta > \left(\frac{\pi}{3} - \theta_c\right)$ to compensate for

the loss in volt seconds.

.

This method brings the characteristics of linear range without increasing computational complexity. In this method the redundancy of the switching states is utilized to minimize voltage THD. The triangles of the space vector diagram are classified based on their switching states and given in the Table 2.

Table 2. Classification of Triangles of the space vector diagram

If (m+n) is even then Type-I	If m is odd and n is even then Type-II	Otherwise If m is even and n is odd then Type-III				
Sa=(m+n)/2	Sa=(m+n+1)/2	Sa=(m+n-1)/2				
Sb=(n-m)/2	Sb=(n-m+1)/2	Sb=(n-m-1)/2				
Sc = -(m+n)/2	Sc = -(m+n-1)/2	Sc=-m+n+1)/2				

The switching sequence design is selected so that there will be minimum number of switches per switching period. There will be only one level change per commutation of switching devices and lower output THD. The sequence is designed based on co-ordinates of the vertices of the triangle where the reference vector lies. The sequence followed corresponding to Type-I switching states of the inverter triangle where the reference vector lies is $(m_3,n_3) \rightarrow (m_1,n_1) \rightarrow (m_2,n_2) \rightarrow (m_1,n_1) \rightarrow (m_3,n_3)$. For Type-II the switching sequence is $(m_1,n_1) \rightarrow (m_3,n_3)$ $(m_2,n_2) \rightarrow (m_3,n_3) \rightarrow (m_1,n_1)$. Otherwise for Type-III $(m_1,n_1) \rightarrow (m_2,n_2) \rightarrow$ $(m_3,n_3) \rightarrow (m_2,n_2) \rightarrow (m_1,n_1)$. By selecting the switching states in the above manner the average inverter phase voltage will have lowered substantial total harmonic content. The proposed technique is simulated with induction motor load. The induction motor model is developed in stator reference frame; the electromagnetic torque is given by

$$T_e = \frac{3}{2} \frac{p}{2} \frac{L_m}{\sigma L_s L_r} |\lambda_r| |\lambda_s| \sin\eta$$
⁽¹²⁾

Where η = angle between the stator and rotor flux linkage

$$\sigma = \text{Leakage coefficient} = \frac{1}{1 - \left(\frac{L_m^2}{L_s \cdot L_r}\right)}$$

4. RESULTS AND DISCUSSIONS

The performance analysis of the proposed method is done for five level Cascaded H-Bridge inverter through simulation and experimentally using FPGA for various values of modulation indexes.

4.1. Simulation results:

The simulation is carried out with DC voltage of 100V. The parameters of Induction motor for simulations are, The parameters of the Induction motor for simulation are V=240V, 0.5Hp, Rotor resistance (Rr) = 2.5Ω ; Stator resistance (Rs) = 2.3Ω ; Stator Leakage Inductance (Ls) = 0.25Ω ; Rotor leakage inductance (Lr) = 0.25Ω ; Magnetizing inductance (Lm) = 0.25Ω ; mutual inductance (M) = 0.0905H; Rated Frequency = 50Hz; damping coefficient (B) = 0.000124; Moment of inertia = 0.019J; Number of poles = 4. The simulation results are shown.

Figure 4. The Line voltage of the five level inverter with mi of 0.8

Figure 5 shows the simulated waveforms of stator current. The motor starts under rated voltage and frequency without mechanical load; The peak value of starting current is around 35A. The starting time is 0.15 seconds, due to inertia and high starting current. At 0.25 seconds load torque of 30Nm is applied which causes currents to increase.

Figure 5. Three Phase Stator currents of induction motor with m_i of 0.8

Figure 6. The Phase voltage of the inverter with variation of m

The value of modulation index is varied with 0.6 at starting to 0.9 at 0.5 sec and 0.99 at 0.7 sec

Figure 7. The Line voltage and current of the inverter with variation of m

From the above Figure it can be seen that the magnitude of Current increases at 0.5 seconds due to increase of m_i , and stabilizes and further increases with increase of m to 0.99.

Figure 8. The Torque of induction motor with variation mi with respect to time

The above figure clearly shows the increase in torque corresponding to increase in m_i at 0.5 seconds and settles to a rated value within 0.05 seconds duration.

Figure 9. The speed of induction motor with variation mi with respect to time

Table 3. Voltage and Current THD as a percentage of fundamental for Five level Cascaded H-Bridge Inverter for switching frequency of 1050

S.No	m	%V PTHD	% I THD							
1	0.82	18.6	34.3	5.3						
2	0.87	19.5	31.4	5.7						
3	0.9	17.3	27.4	6.0						
4	0.96	15	28.6	6.4						
5	0.99	15.5	28.1	5.3						

Table 4. Voltage and Current THD as a percentage of fundamental for Five level Cascaded H-I	Bridge Inverter
for switching frequency of 3600	

S No	m	%V	%V	%I
5.110	III	LTHD	PTHD	THD
1	0.82	17.5	34.5	1.6
2	0.87	18.1	30.7	2.5
3	0.9	16.4	26.6	2.5
4	0.96	14.2	28.3	3.7
5	0.99	14.7	27.6	3

4.2. Experimental Results

The performance of the proposed method is tested with induction motor of rating 0.75KW, 415V, and 1415 rpm 0.8p.f as load for prototype Five level Cascaded H-Bridge multi level inverter with The Spartan-3A FPGA processor. VHDL program code is simulated and implemented using XILINX 15E-14.5 Software. The FPGA design flow comprises of Design entry- with assigning constraints such as timing, pin location and area constraints including UCF file, Synthesizing the design with source code converting into net list of gates. The net list is translated mapped and routed for logic circuits of the Spartan 3E FPFA.After functional and timing verification the bit file is downloaded to target device (Spartan 3E processor) by using impact with a programming cable. Once the program is dumped to FPGA kit it acts as a controller and generates the gate signals to drive the three phase inverter. The harmonic analysis at various modulation indexes is presented.

Figure 10. Experimental Phase voltages and currents for 0.6 modulation index and switching frequency of 2000Hz for Five level Cascaded H-Bridge Inverter

PEA.	HARDWEELS	12.941	6.2544		familianty 📓	Finaliza		E I E	Star True	11	• II - F	1				
-	-	-		mit	hundhan Kimmer	a maker yr	191	GA		11000	Sec.					
SHELL	THE ALL	1000001		1 A		· · · · ·	_K177.7	9		W.	and the second second		 	_	_	
the state		Tak and		10.0			1.0.00	9.8892	0.0400		1.000					
6 m m	10.000 million	12.000		11 P		· · · · · · · · · · · · · · · · · · ·	-X	8. 37.49	0.12	6-181						
<u>.</u>	in preside	1.000		10.0			1	1	30.26							
2	or includes	1.000					1 194.0			1.19					1.10	
	0.0104						1. 8.251	9							1 1	
		1.000		10.0				76.18	73.38	1.194				1		
					71950			0	#0.961	1.198			ц,			
-				10.0	TINK		1 48,00	9. 36.867	**	1.10						
	P. 6009			10			1. 1757	0	41.98	W.			1.1	11		
		8.048		1 N -				100,49	47.01							
10	0.00110	- A.535		88.11	- H- H	· · · · · · · · · · · · · · · · · · ·	1.1.16.042	3 . 3,6144	8.3178	A.						
13	0.0100	3.447								1006-14						
12	8.0008					-				the state of the s						
	to conserve	1.144		- Parente	Chemister 1 4m	Elleroper52	Corpets .	Anten Las		A	-		1.1.80		_	
	3,0017			10.0	177.29	145.47	157.46	172.50	W/	- 18						
18	0.06002	8,487		III (ii. mines	8.44210	0.0421	5.6494		- 18						
18	10,06021	3,413			34.04	2.84	10.45	84.53	AN							
17	0.00001	8.798			199.11	140.04	141.00	101.24								
18	0.0004	8.367			1.99.000	145.54	1 104-000	198.48								
18	0.0178	1.871		Hilling							1					
19	5,05126	6.227								التلعق						
F1	0.00110	0.200		and the second second												
14	0.0007	0.744		Concession in the local division in the loca	and the second					10000						
0	8.0274	LATE		THE ROOM				*******	*** *****	44						
14	0.0007	6.744														
15	8,0340	1.000		and the second se	1000		_									
180	44.040301	0.000		a second second	and the state of the		and the second second			12.1						
2.8	0.081110	0.138	-									_	T 140			

Figure 11. Experimental Phase output voltages and currents for 0.87 modulation index and switching frequency of 2000Hz for Five level Cascaded H-Bridge Inverter

A Simplified Space Vector Pulse Width Modulation Method Including Over Modulation (Bogimi Sirisha)

1210

10	AD ROL	15.557 0.FFEF		
	A4 0.01 0.00007 0.0720 0.0170 0.0170 0.0109 0.0109 0.00170 0.00170 0.0019 0.0019 0.0019	1445-5.17 100.000 5.550 5.550 4.540 5.570 5.740 5.740 5.747 5.727 5.729 5.729	Image: state of the s	
11111111111	0.0037 0.0099 0.0099 0.0015 0.0014 0.0117 0.0159 0.0059 0.0009 0.0009	0,306 1,079 0,011 0,011 0,011 0,010 1,000 1,000 1,000 0,	Processor Discoverial Discoverial <thdiscoverial< th=""> <thdiscoverial< th=""> <</thdiscoverial<></thdiscoverial<>	
121022	0.0087 0.0253 0.0077 0.02732 0.0035 0.0035	1.000 0.4340 0.073 0.073 0.4760 0.4760 0.5750		

Figure 12	. Experimenta	l Phase	output	voltages a	and curr	ents for 0.9	97 i	modulatior	n index	and	switch	ing
	frequ	ency of	f2000Hz	t for Five	level C	ascaded H-	-Br	idge Inver	ter			

Table 5. Experimental values of current and voltage THD's for various values of m_i

	1		6		1
m	Outputvoltage (v _{ph})	current	Power in Watts Po	V _{phTHD}	I_{THD}
0.7	64.6	1.8	151.9	42.3	4.5
0.8	159.7	0.75	46.4	29.40	15.0
0.9	155	0.73	44	29.54	15.3
0.97	167.3	0.79	52.9	30.7	16.5
0.99	164.7	0.78	50.8	29.7	15.0

5. CONCLUSIONS

The proposed method effective in terms of reducing computational complexity of Space Vector Modulation method, by which the co-ordinates of the space vector are in integer scales, and easily extended for over modulation region with combination of reference voltage vector modification and on time modification. This technique is more precisely suitable for hardware implementation. This technique is applied for five level cascaded H-Bridge inverter for both linear and over modulation regions using Spartan 3A FPGA Processor. The results corresponding to the various values of m_i indicates the linear characteristics in the over modulation region. The current and voltage THD increases slightly due to increase of sub harmonic components for higher m_i, but the rms value of the output line voltage magnitude also increased giving the effective utilization of DC bus voltage.

ACKNOWLEDGEMENT

We thank the University Grants Commission (UGC), New Delhi for providing Major Research Project to carry out the research in the area of Multi level inverters.

REFERENCES

- [1] J. Rodríguez, *et al.*, "Multi level converters: a survey of topologies, controls and applications," *IEEE Trans. Ind. Electron.*, vol/issue: 49(4), pp. 724-738, 2002.
- [2] J. S. Lai and F. Z. Peng, "Multilevelconverters–Anewbreedof power converters," *IEEE Trans. Industrialappl.*, vol/issue: 32(3), pp. 509-517, 1996.
- [3] L. Hu, et al., "A simple SVPWM Algorithm of Multilevel inverter," Power Electronics specialistic conference, Achen, 2004.
- [4] A. Nabae, *et al.*, "A new neutral-point clamped pwm inverter," *IEEE Trans. Ind. Appl.*, vol/issue: 1A-17(5), pp. 518-523, 1982.
- [5] N. Celanovic and D. Boroyevich, "A fast space vector modulation algorithm for multilevel three phase converters," *IEEE Trans on Industry Applications*, vol/issue: 37(2), pp. 637-641, 2001.
- [6] I. Yiqiao and C. O. Nwankpa, "A new type of statcom based on cascadingvoltage source inverters with phaseshifted unipolar spwm," *IEEE trans. on industry applications*, vol/issue: 35(5), pp. 1118-1123, 1999.
- [7] A. Tripati, et al., "Direct Method of Over modulhion with integrated closed loop Stator Flux vector control," IEEE Trans. on Power Electronics, vol/issue: 20(5), pp. 1161-1168, 2005.
- [8] D. W. Kang, et al., "A carrier wave-based svpwm using phase-voltage redundancies for multilevel h-bridge inverter," International conference on industrial electronics, control, and instrumentation, vol.1, pp.324-329, 1999.
- [9] H. H. Wang, et al., "A simple SVPWM Algorithm of Multilevel inverter," Power Electronics Specialistic conference, Achen, 2004.

- [10] A. K. Gupta and A. M. Khambadkone, "A General Space Vector PWM Algorithm for multi level inverters, including operation in overmodulation range," *IEEE Transactions on Power Electronics*, vol/issue: 22(2), 2007.
- [11] S. Wei and B. Wu, "A General Space Vector PWM control Algorithm for Multi-level inverters," *IEEE*, pp. 562-568, 2003.

BIOGRAPHIES OF AUTHORS

B.Sirisha obtained her B.E degree in Electrical & Electronics Engineering from Osmania University and M.E degree in 2003 from JNTU, Hyderabad and persuing Ph.D. in the area of multilevelinverters. She is currently working as Assistant Professor in Department of Electrical Engineering, University College of Engineering (Autonomous), Osmania University, Hyderabad, Telangana, India. Her research interests include Power Electronics, multilevel inverters and drives.

Dr. P. Satish Kumar was born in Karimnagar, Andhra Pradesh, INDIA in 1974. He obtained the B.Tech degree in electrical engineering from JNTU College of Engineering, Kakinada in 1996. He obtained M.Tech degree in power electronics in 2003 and Ph.D. in 2011 from JNTUH, Hyderabad. He has more than 16 years of teaching and research experience and presently working as Senior Assistant Professor in the Department of Electrical Engineering, University College of Engineering, Osmania University, Hyderabad, INDIA. He presented many research papers in various national and international journals and conferences. Achieved Award for Research Excellence and Best young teacher Award-2014.Holds UGC-Major Research Project and SERB (DST)-Research Projects on multilevel inverters. His research interests include Power Electronics Drives, Multilevel inverters, Matrix Converters and special machines.