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 This paper deals with controlling a grid-connected dual-active bridge 

multilevel inverter for renewable energy integration. The concept of direct 

power control is integrated with model predictive control algorithm, which is 

termed as predictive direct power control, to control the real and reactive 

power injected into the power grid. The proposed multilevel inverter allows 

more options of feasible voltage vectors for switching vector selections in 

order to generate multilevel outputs, and thereby obtaining high power 

quality in the power grid. By using the predictive direct power control, 

simulation results show that the proposed multilevel inverter produces lower 

power ripple and manage to achieve currents with low total harmonic 

distortion which are well within the IEEE standard. The modeling and 

simulation of the system are implemented and validated by MATLAB 

Simulink software. 
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1. INTRODUCTION  

Developments in renewable energy (RE) integration are getting to be distinctly essential as 

worldwide need affordable, reliable, and clean energy. In recent years, renewable energy sources are used to 

fill the developing energy claim. The expansion in industrialization has increasing the energy demand. It is 

widely known that the biggest energy request is provided by the fossil fuels. Nonetheless, the induced air 

pollution as well as the expanding cost of fossil energy have made it important to look towards renewable 

energy sources as a future energy solution. Therefore, the integration of renewable energy resources with the 

grid has prompted significant researches in power electronic converters for energy conversion [1]. 

Power quality (PQ) issues have turned out to be essential problems for power consumer at all level 

of utilization. Electrical power quality is a wide field which covers power systems engineering, from 

transmission and distribution, to end client issues. Approximately 70 to 80% of all the related power quality 

problems are attributed to faulty connections. There are various categories of PQ issues, namely the power 

frequency disturbances, electromagnetic interference, transients, harmonics and low power factor. Among all 

of these problems, current harmonics are one of the most dominant concern which is worth emphasized.   

To date, one of the popular approaches for controlling the performance of power system is by 

utilizing the power electronic interfaces. Some common control parameters usually involve frequency, 

system voltages, current harmonics, active and reactive power. A proper selection of power converter is 

important in order to work as a good interface between the grid and renewable energy sources. However, 

interconnection of renewable sources into the grid is generally a new development which is very challenging 

due to the intermittent characteristics of the renewable energies, particularly the wind and photovoltaic 
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energy which are highly dependent on the unforeseen climate change. This may bring about abundance 

variety of voltage or frequency of the grid and further deteriorate the quality of the grid. In this regard, the 

control of power electronic converter which can synchronized to the grid and efficiently maintain the power 

quality of the system become exceptionally important [2].  

The control of grid connected voltage source converter has attracted much attentions nowadays. 

Generally, control methods can be broadly classified into two categories, i.e. the direct and indirect control 

methods. Voltage Oriented Control (VOC) is a type of indirect control technique which is mostly used to 

control the voltage source converter. On the other hand, direct power control (DPC) is one of the most 

popular direct control strategies in grid connected inverter. This technique is derived from the concept of 

direct torque control (DTC) from which in each sampling period, an optimal voltage vector is selected from a 

look-up table in order to push the state of the system towards the reference value. The main drawback of 

DPC strategy is the use of hysteresis controller that caused variable switching frequency and hence dispersed 

harmonic spectrum. In addition, it suffers from poor reference tracking with large power ripples. Predictive 

Direct Power Control (PDPC) can be viewed as an extension of DPC by replacing the switching table with 

predictive vector sequence selection. PDPC approach has been employed in order to overcome the drawbacks 

in DPC strategy [3].  

Adoption of efficient controllers for the system alone is not enough, different topologies of 

converters also have great impact on the system performance. The various multilevel inverters presented in 

literature have been generally perceived as interesting solutions to enhance the voltage limits to a desired 

level. Therefore, multilevel inverter (MI) has the merit of low current total harmonic distortion (THD) with 

closely sinusoidal output current waveforms and lower switching losses [4]. The induced low harmonics and 

low power ripple are very important since it may prevent, or at least reduce the costs arisen in power losses 

and bad functioning of equipment from either the consumers or electrical distribution system. In this 

instance, this work proposes the implementation of a type of MI, termed as dual-active bridge multilevel 

inverter (DABMI) as the grid connected converter. The concept of advance PDPC control strategy is adopted 

to control power quality issues of the proposed DABMI for renewable energy integration.  

 

 

2. DUAL-ACTIVE BRIDGE MULTILEVEL INVERTER TOPOLOGY 

Compared to other cascaded MIs, the dual-active bridge multilevel inverter (DABMI) topology 

has received little attention despite its simplicity of fault-tolerant capacity [5]-[6]. As the name implies, it 

comprises two inverters cascaded in the form shown in Figure 1. It is reliable because its outputs can be 

short-circuited when there is damage in either one of the cascaded inverters. In this regard, DABMI is 

functioning as a standard two level three-phase inverter [7]. The two isolated dc sources are used to cut the 

path of common-mode current flow and to achieve multilevel voltage waveforms [8]. Note that both the 

cascaded inverters use equal number of transistors which allow the DABMI to imitate and produce voltages 

similar to waveforms generated by a two-level, a three-level or a four-level inverter based on the possible 

switching states and active vectors [9]-[10]. 

 

 

 
 

Figure 1. Dual-active bridge multilevel inverter  
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The merits of DABMI are also pronounced when it is compared to other type of MI. For instances, 

it does not require fast recovery clamping diodes and immune to neutral point fluctuations experienced by the 

neutral point clamped multilevel inverter (NPCMI) configuration. When compared to flying capacitor 

multilevel inverter (FCMI) topology, DABMI uses less capacitors [11] and hence getting rid of complicated 

capacitor control. On the other hand, it also uses fewer isolated dc supply than H-bridge converters [12]-[14] 

and less diodes than NPCMI [15].  

 

 

3. PREDICTIVE DIRECT POWER CONTROL OF A DUAL-ACTIVE BRIDGE MULTILEVEL 

INVERTER 

3.1.  System Description 
This work is putting emphasis on DABMI topology with PDPC control, as presented in Figure 2. 

The standard two level inverters with a total of twelve switches work in a complementary manner to avoid 

short circuit. On the other hand, apart from isolating the load from the system, the three-phase transformer 

also serves to match the voltage levels to the grid. The primary transformer is fed by the two cascaded 

inverters while the secondary transformer is connected to the RL loads which are connected to the power 

grid. The series equivalent resistance is considered in the circuit and function to acquire more accurate 

control of power. Modulation scheme is nonessential in this control approach since the PDPC itself will 

generate the possible switching state to produce switching pattern. The effectiveness of minimizing 

harmonics current, power ripple and precise power tracking has been proven by the performance of  

PDPC [16]. 

The most basic and fundamental requirement for multilevel inverter with grid connected 

applications is to keep the inverter synchronized with the grid while ensuring appropriate power supply 

regardless of the variation of frequency, amplitude and phase in grid voltages. Synchronization unit has been 

acknowledged to be a compulsory part for grid connected converter [17]. Power and reactive power can be 

directly control by using PDPC while eliminating the use of phase lock loop (PLL) [18]. It is also proved to 

be a promising alternative to provide the synchronization between the grid and inverter with low 

computational burden and low complexity. 

 

 

 
 

Figure 2. PDPC Control Block Diagram of a DABMI 

 

 

3.2.  Predictive Model of Grid Connected DABMI 
The grid voltage component vs and phase current component i, are transformed from the natural 

abc reference frame to the stationary reference frame by using the magnitude invariant Clarke 

Transformation, which is given by 
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The dynamic input current of the converter can be expressed as 

 

                                (2) 

 

Where vsαβ denotes the grid voltage, iαβ denotes the phase current, and vcαβ denotes the output voltage of 

inverter all in αβ frame. The respective derivative of phase current component can be determined by 

rearrangement of (2). 
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The magnitude invariant instantaneous active power P and reactive power Q are defined as  
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The resulting dynamic model of active and reactive power are 
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Discretization of (5) enable the calculation of the predicted active power and reactive power at the next 

sampling instant, ( 1)P k   and    
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It is worth emphasized that both ( 1)P k   and  depend not only on the grid parameters 

but also taken into account the grid frequency. The evaluation of (6) is necessary to predict the optimum 

voltage vector. The quadratic cost function which measures the deviation between the reference power and 

the predicted power is defined as 
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                                                                          (7)   

 

where P* represents the reference active power and Q* represents the reference reactive power. 

 

 

4. SIMULATION RESULT 

In order to verify the feasibility of the proposed system, the PDPC of grid connected DABMI has 

been simulated using MATLAB/ Simulink Software. The system parameters used in simulation are shown in 

Table 1. 

 

 

  

In DABMI, each inverter consists of two voltage level and six phase legs, which constitutes 64 feasible 

switching states. However, there are only 37 unique voltage vectors for selection due to the redundancy of 

switching states, as shown in Figure 3. As a result, the DABMI is able to generate more possible switching 

states. The output voltages can hence be stepped in smaller increment and permit lower total harmonic 

distortion with lower switching frequency and thus reduce the switching losses.  

The reference active power, P*of this system is set to 5000W and the reference reactive power, Q* 

is kept at zero. The output power and reactive power illustrate in Figure 4 shows that the proposed controller 

manage to keep the active and reactive power close to their references. Low active and reactive power ripple, 

which are approximately 100W and 106VAR respectively, are identified with lower current harmonics 

established in the system. 

  

 

 
 

Figure 3. Voltage Vector of DABMI 
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 Table 1. System Parameter  

Description       Variable      Value 

Rated Power 
DC Voltage 1 

DC Voltage 2 

Transformer voltage rating 
Sampling Time 

Line Voltage Frequency 

Inductance 
Equivalent series resistance    

of inductor 

P 
Vdc1 

Vdc2 

Tx 
Ts 

f 

L 
RL 

5kW 
300V 

150V 

500/500V 
50e-6s 

50Hz 

9e-3H 
0.14Ω 
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Figure 4. Output power (P) and reactive power (Q) of DABMI 

 

 

It is apparent from Figure 5 that the DABMI achieves its peak voltage ratings of  
 

 
   , i.e. 200V. It 

is also proved that the proposed PDPC can perform the multilevel operation for dual- active bridge multilevel 

inverter. The performance of the three phase output currents is presented in Figure 6 which illustrates the 

sinusoidal line current with peak amplitude of 28A out of phase with each other by 120
o
. Figure 7 shows the 

grid voltage and current are in phase for phases, a, b and c. Hence, it shows good agreement with Figure 4 

that the reactive power is zero. Hence, the PDPC is verified to be functionaing properly without the need of 

grid synchronization module such as PLL. Harmonic spectrum current of phase a, b and c in Figure 8 – 

Figure 10 shows excellent value of total harmonic distortion (THD) of the proposed system, to be 

specifically, 0.63% for phase a, 0.67% in phase b and 0.63% of phase c has been achieved, which is within 

the IEEE standard 519. 

 

 

 
 

Figure 5. Output voltage of DABMI 
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Figure 6. Output current of DABMI 

 

 

 
 

Figure 7. Grid current and voltages 

 

 

  
(a) (b) 

Figure 8.  Harmonic spectrum current of phase a Figure 9.  Harmonic spectrum current of phase b 
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Figure 10.  Harmonic spectrum current of phase c 

 

 

5. CONCLUSION  

In order to improve the power quality performance in term of lower total harmonic distortion (THD) 

and reduce the power ripple, this paper propose a control method, namely the predictive direct power control 

(PDPC) for grid-connected dual-active bridge multilevel inverter (DABMI). DABMI enable the generation 

of 64 feasible switching states with 37 unique voltage vectors. Modulation stage is unnecessary with on-line 

optimisation is perfomed through minimizing a cost-function to obtain the optimized voltage vector for each 

sampling period. By directly controlling the active power P and reactive power Q, grid current is 

automatically aligned with the grid voltage without the need of additional synchronization module such as 

phase-locked-loop (PLL). It is found that the proposed control method managed to produce low power ripple 

and achieve low current THD which is well within the IEEE standard. 
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