Optimal location of unified power flow controller genetic algorithm based

Sana Khalid Abdul Hassan, Firas Mohammed Tuaimah


Now-a-days the Flexible AC Transmission Systems (FACTS) technology is very effective in improving the power flow along the transmission lines and makes the power system more flexible and controllable. This paper deals with overload transmission system problems such as (increase the total losses, raise the rate of power generation, and the transmission line may be exposed to shut down when the load demand increase from the thermal limit of transmission line) and how can solve this problem by choosing the optimal location and parameters of Unified Power Flow Controllers (UPFCs). which was specified based on Genetic Algorithm (GA) optimization method, it was utilized to search for optimum FACT parameters setting and location based to achieve the following objectives: improve voltages profile, reduce power losses, treatment of power flow in overloaded transmission lines and reduce power generation. MATLAB was used for running both the GA program and Newton Raphson method for solving the load flow of the system The proposed approach is examined and tested on IEEE 30-bus system. The practical part has been solved through Power System Simulation for Engineers (PSS\E) software Version 32.0 (The Power System Simulator for Engineering (PSS/E) software created from Siemens PTI to provide a system of computer programs and structured data files designed to handle the basic functions of power system performance simulation work, such as power flow, optimal power flow, fault analysis, dynamic simulations...etc.). The Comparative results between the experimental and practical parts obtained from adopting the UPFC where too close and almost the same under different loading conditions, which are (5%, 10%, 15% and 20%) of the total load. can show that the total active power losses for the system reduce at 69.594% at normal case after add the UPFC device to the system. also the reactive power losses reduce by 75.483% at the same case as well as for the rest of the cases. in the other hand can noted the system will not have any overload lines after add UPFC to the system with suitable parameters.

Full Text:


DOI: http://doi.org/10.11591/ijpeds.v11.i2.pp886-894
Total views : 218 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.